JESCER

IS5N: 2708-1079

Journal of Science, Computing and Engineering Research (JSCER)
Volume-7, Issue-11, November 2024.
DOI: https://doi.org/10.46379/jscer.2023.071102

Network Intrusion Detection System Using Hybrid Deep

Learning

'R. KARTHICK, 2J. MOHAMMED ZAYED RAHAMAN, 3S. ABISHEIK, “A. NAMBI RAJA,
°L. ARUN PRASATH

15 Computer Science and Engineering, KLN College of Engineering, Madurai, India,

Article Information

Received 10 Nov 2024
Revised : 13 Nov 2024
Accepted 15 Nov 2024
Published : 17 Nov 2024

Abstract— This Network Intrusion Detection System (NIDS) are essential for safeguarding
computer networks, analyzing traffic to detect malicious activities. With increasing network
traffic and sophisticated cyber-attacks, traditional rule- and signature-based IDS struggle
with scalability and adaptability. This research examines the use of hybrid deep learning
techniques—Ilike Convolutional Neural Networks (CNNs) combined with Bidirectional Long
Short-Term Memory (BiLSTM)—to enhance NIDS capabilities in detecting both known and

unknown attacks. Recent advancements demonstrate that deep learning-based NIDS improve
detection accuracy and reduce false positives, offering a robust and scalable solution for

Corresponding Author:

network security.

Arun prasath

Keywords: anomaly detection, convolutional neural network, cyber attacks, deep learning,

network security

Copyright © 2024: R. Karthick, J. Mohammed Zayed Rahman, S. Abisheik, A. Nambi Raja, L. Arun Prasath, This is an
open access distribution, and reproduction in any medium, provided Access article distributed under the Creative Commons
Attribution License the original work is properly cited License, which permits unrestricted use.

Citation: R. Karthick, J. Mohammed Zayed Rahman, S. Abisheik, A. Nambi Raja, L. Arun Prasath, “Network Intrusion
Detection System Using Hybrid Deep Learning”, Journal of Science, Computing and Engineering Research, 7(11), November

2024.

l. INTRODUCTION

Intrusion Detection is a way of monitoring the events
happening within a network or on a local system to detect
any signs of abnormal or malicious breaching the security or
standard policies. Intrusion Detection Systems (IDSs) are
broadly classified into host-based and network-based. The
former monitors an individual computer system (e.g.,
operating system files and logs) looking for malicious
activities, whereas the latter examines network traffic to
recognize any malicious and anomalous activities that can
be part of an attack. Hybrid deep learning combines multiple
deep learning models or methodologies to enhance
performance, robustness, and adaptability in various
applications. This can involve the combination of different
neural network architectures, such as convolutional neural
networks (CNNs) for image data and recurrent neural
networks (RNNs) for sequential data, allowing for a more
comprehensive analysis of multimodal data.

II. RELATED WORKS

Programming education is undergoing a revolution
thanks to automated assessment systems and data mining
techniques, which provide predictive analytics,
individualized learning experiences, and thorough insights
into student performance. But conventional approaches
frequently lack hands-on coding experience, necessitating a
more efficient strategy. We suggest OptiCode, a cutting-

edge approach created to close this gap by improving
accessibility and efficacy in programming skill acquisition.
[1] Current method for Network Intrusion Detection System:
The hybrid model overcomes the drawbacks of conventional
signature-based systems by producing synthetic data that
imitates malicious and legitimate traffic, improving the
ability to identify new threats. [2] Detection Systems with
Deep Learning: It examines several architectures, including
Long Short-Term Memory (LSTM) networks and
Convolutional Neural Networks (CNNs), emphasizing their
better detection rates and real-time processing capabilities in
comparison to conventional techniques.

1. PROPOSED SYSTEM

By incorporating cutting-edge Al techniques for
individualized learning and code improvement, OptiCode is
a creative system that improves programming education.
After users choose a programming language and subject,
Jina Embedding converts their queries into numerical
vectors. Large Language Models (LLMs) and Retrieval
Augmented Generation (RAG) are used by the system to
produce precise code snippets that enable interactive
optimizations and corrections. By utilizing real-time data,
this all-inclusive workflow creates an immersive learning
environment and raises the bar for programming education.

Advantages of the Proposed System:

Page |1

Network Intrusion Detection System Using Hybrid Deep Learning

Available at https://jscer.org

. The hybrid architecture can detect complex attack
patterns that may not be apparent through either spatial or
temporal analysis alone.

. The hybrid model is designed to detect anomalies
and attacks in real-time, allowing for immediate action to be
taken

A. SOFTWARE REQUIREMENTS
1. Python

Python is like a versatile toolbox for programmers,
offering a wide array of tools and gadgets to tackle virtually
any coding task with ease. Python is a friendly guide
through the dense forest of programming. Its syntax, or
grammar, is designed to be easily understood, making it
accessible even to those venturing into the coding
wilderness for the first time. With Python, you don't need to
20 decipher complex hieroglyphics; instead, you're greeted
with familiar words and phrases, making your journey
smoother and more enjoyable. This programming language
operates like a skilled interpreter, executing your commands
line by line in real-time. Whether you need to manipulate
data, build a website, or train a machine learning model,
Python has a module ready to assist you. These modules act
as trusty companions, offering shortcuts and solutions to
common challenges, saving you time and effort along your
coding expedition. Despite its simplicity, Python is a
powerful language, capable of handling complex tasks with
grace and precision. Like a skilled craftsman, Python allows
you to create intricate structures and designs, whether you're
building a simple script or a sophisticated application.
Python boasts a vibrant and welcoming community of
developers. Here, you'll find support, guidance, and
camaraderie, as you embark on your coding journey together

2. Pandas

Pandas is an open-source data manipulation and
analysis library for Python that provides data structures and
functions needed to work with structured data seamlessly. It
introduces two primary data structures: Series, which is a
one-dimensional labelled array capable of holding any data
type, and Data Frame, a two-dimensional labelled data
structure similar to a spreadsheet or SQL table. Pandas
makes it easy to clean, transform, and analyse data, allowing
users to perform operations like filtering, grouping,
merging, and reshaping datasets with simple syntax. One of
the key strengths of Pandas is its ability to handle missing
data and time series data, making it a powerful tool for data
scientists and analysts dealing with real-world datasets. The
library supports various file formats for data input and
output, including CSV, Excel, and SQL databases,
facilitating smooth data integration. Additionally, Pandas
leverages the performance of NumPy, making it efficient for
large datasets and complex computations.

3. Tensorflow or PyTorch

TensorFlow and PyTorch are two of the most
widely used deep learning frameworks that enable
developers to build, train, and deploy complex machine
learning models efficiently. TensorFlow, developed by
Google, provides a robust and scalable platform for large-
scale machine learning applications, offering features such
as automatic differentiation and a flexible architecture that
supports both CPU and GPU computations. Its
comprehensive ecosystem includes tools for model
deployment, such as TensorFlow Serving and TensorFlow
Lite, which facilitate the integration of machine learning
models into production environments. On the other hand,
PyTorch, developed by Facebook, is known for its dynamic
computation graph, which allows for more intuitive model
building and debugging. This feature makes PyTorch
particularly appealing for researchers and developers who
prioritize flexibility and speed during the experimentation
phase. Both frameworks provide extensive libraries and
tools for handling data, defining neural networks, and
optimizing model training, making them ideal for tasks such
as image recognition, natural language processing, and,
importantly, network intrusion detection systems (NIDS)
using hybrid deep learning. By leveraging either
TensorFlow or PyTorch, developers can harness powerful
algorithms and techniques to improve the accuracy and
efficiency of NIDS, ultimately enhancing cybersecurity
measures.

4. Google collab

Google Collab, or Google Collaboratory, is a
cloud-based platform that enables users to write, execute,
and share Python code directly from their web browser. It is
especially favored in the data science and machine learning
communities for its accessibility and powerful features.
Users can create Jupyter notebooks, which allow for a mix
of code, visualizations, and rich text, making it easy to
document workflows and findings. One of the standout
features of Google Colab is its free access to powerful
computing resources, including GPUs and TPUs, which are
crucial for training complex machine learning models. This
capability democratizes access to high-performance
computing, allowing individuals and teams to work on data-
intensive projects without needing expensive hardware.
Integration with Google Drive streamlines file management,
enabling users to easily save, share, and collaborate on
notebooks in real time. Additionally, Google Collab
supports popular libraries such as TensorFlow, PyTorch, and
scikit-learn, making it a versatile tool for various machine
learning and data analysis tasks. With its user-friendly
interface and collaborative features, Google Collab serves as
an invaluable resource for learners and professionals alike,
fostering experimentation and innovation in the field of data
science. You can run different versions of your model in

Page | 2

Network Intrusion Detection System Using Hybrid Deep Learning

Available at https://jscer.org

parallel by opening new colab sessions or tabs. This is
helpful for hyperparameter tuning and testing different
configurations of your CNN and BiLSTM. The platform is
suitable for both beginners and experienced developers due
to its intuitive interface.

V. IMPLEMENTATION

The implementation of a Network Intrusion Detection
System (NIDS) using CNN and BiLSTM involves several
key stages, each designed to build a robust model capable of
identifying malicious network activities. Below is an in-
depth overview of the steps involved:

Data Preprocessing

The first step is choosing a comprehensive dataset that
reflects realistic network traffic, such as UNSW-NB15 or
CICIDS2017. These datasets contain labeled instances of
normal and attack traffic, which are essential for training
and testing the NIDS.

The raw dataset may include irrelevant or redundant
features and missing values. Data cleaning ensures these
issues are addressed by removing or imputing missing data
and discarding unnecessary features.

Feature extraction involves selecting relevant attributes
that enhance the model's ability to learn from the data. This
step may include domain-specific knowledge to focus on
features that indicate network behavior.

To maintain uniformity, features are normalized or
standardized. This step helps in scaling numerical data to a
consistent range, improving the convergence rate during
training.

The preprocessed data is divided into training,
validation, and testing sets, ensuring that the model has
separate data for learning, tuning, and evaluation.

CNN Feature Extraction

The initial layer of the model employs a 1D CNN to
identify local dependencies and extract key features from
the input data. This helps in capturing patterns that indicate
potential intrusions.

The convolutional layer is configured with suitable
kernel sizes and a number of filters to optimize feature
detection. ReLU (Rectified Linear Unit) activation functions
are applied to introduce non-linearity, enhancing the model's
capacity to learn complex patterns.

Max-pooling layers follow the convolutional layer to
reduce the feature map's dimensionality, ensuring
computational efficiency and highlighting the most
significant features.

Bidirectional Long Short-Term Memory (BiLSTM)
Layer:

The extracted features from the CNN are fed into a
BiLSTM layer. This type of recurrent neural network
processes data in both forward and backward directions,
enabling the model to learn long-term dependencies and
context within the sequential data.

BiLSTMs are particularly useful in analyzing time-series
data, such as network traffic, where understanding the order
of events is crucial for distinguishing between normal and
malicious activity.

Dropout layers are added after the BiLSTM to prevent
overfitting by randomly dropping a portion of neurons
during each training iteration. This promotes the model's
ability to generalize to new data.

Model Compilation and Training

The model is compiled using an optimizer like Adam or
RMSprop, known for adaptive learning rate properties that
improve convergence. The loss function typically used for
classification tasks is categorical cross-entropy if the
problem is multi-class or binary cross-entropy for binary
classification.

The training phase involves fitting the model to the
training data, with hyperparameters such as the learning
rate, batch size, and number of epochs being tuned for
optimal performance. Techniques like early stopping and
learning rate schedulers can be used to halt training when
the validation performance plateaus, preventing overfitting.

During training, validation data is used to monitor the
model's progress and fine-tune the architecture if necessary.
This step ensures that the model learns effectively and
generalizes well to unseen data.

Model Evaluation

Once trained, the model is evaluated on the test set to
gauge its performance. Metrics such as accuracy, precision,
recall, and F1-score are calculated to assess how well the
NIDS can identify and classify intrusions.

Accuracy measures the overall correct classifications
made by the model.

Precision indicates the proportion of true positive
detections out of all positive detections, measuring the
model’s reliability in identifying attacks.

Recall (Sensitivity) assesses the model's ability to
identify all actual positives (attack instances).

F1-score provides a balance between precision and
recall, giving a single metric that accounts for both false
positives and false negatives.

Optimization and Fine-tuning

Page | 3

Network Intrusion Detection System Using Hybrid Deep Learning

Available at https://jscer.org

Techniques like grid search or random search can be
employed to find the best combination of hyperparameters
(e.g., number of CNN filters, LSTM units, learning rate).

Combining the CNN-BILSTM model with other
detection approaches or using techniques like stacking can
enhance overall performance.

V. RESULTS

This is the home page of our system where users are
presented with options to choose programming languages
and text box to ask their question, fill their own logic in the
generated code, code analysis for their own logic code and
some sample questions.

Confusion Matrix
Malysis {9 0 0 38 0 0 102 0 0 0 16000

0 0 2 439 3 [7 14 0 3
Backdoor 14000

posq{ 1 0 74 3057 35 0 51 ¥ 10 r=)
12000
Exploits { 2 0 39 8282 130 1 232 130 12 252

10000

Fuzzers{ © 0 2 79 2572 1 1423 % 6 R

Generic{ 0 0 27 21 8 0 10 3 1B 8000

0 0 1 2091372 1 GEEM 130 8 12 6000

Tue label

Normal
Reconnaissance{ O 0 2 742 29 0 131 1933 0 IS

Shelicoge { © © 0 111 26 0 20 58 8 9

wms{© © o0 5 0o 0o 0o 1 o 3

Predicted label
accuracy=0.7975; misclass=0.2025

VI. CONCLUSION

The Network Intrusion Detection System (NIDS) using
hybrid deep learning, which integrates Convolutional Neural
Networks (CNN) and Bidirectional Long Short-Term
Memory (BIiLSTM), offers an advanced and efficient
approach to real-time intrusion detection. This hybrid model
combines the strengths of CNN, which excels in spatial
feature extraction, and BIiLSTM, which is adept at
identifying temporal patterns, to enhance the detection of
both known and unknown network threats. By leveraging
these deep learning models, the NIDS can accurately
identify anomalies in complex network traffic,
distinguishing between benign activities and malicious
intrusions such as Denial of Service (DoS), Distributed
Denial of Service (DDoS), and port scanning attacks.In
conclusion, this hybrid deep learning-based NIDS

demonstrates a highly scalable, adaptable, and reliable
solution for modern network security challenges. Through
extensive unit, functional, and integration testing, it has
proven to be effective in accurately detecting a wide range
of intrusions while maintaining real-time performance,
making it a crucial tool for safeguarding network
infrastructure in today’s ever-evolving cyber threat
landscape.

VILI. FUTURE WORKS

There are several potential enhancements that can be made
to further improve the performance and functionality of the
Network Intrusion Detection System (NIDS) using hybrid
deep learning. This could help the system adapt to different
network configurations and types of traffic. Moreover,
introducing unsupervised learning techniques alongside the
current supervised CNN-BIiLSTM architecture could
enhance the detection of unknown or novel attacks without
relying solely on labeled data. Another future enhancement
could involve using feature selection techniques such as
Recursive Feature Elimination (RFE), which would
optimize the input features used by the system, improving
accuracy and reducing computational complexity.

REFERENCES

[1]. Al-QatfM. I. A., M. Lasheng, M. O. Al-Habib, and K. Al-
Sabahi, "Deep learning approach combining sparse
autoencoder with SVM for network intrusion detection,"
IEEE Access, vol. 6, pp. 52843-52856, Sep. 2018.

[2]. AltwaijryN, TuraikiAl , "A convolutional neural network for
improved anomaly-based network intrusion detection," Big
Data, vol. 9, no. 3, pp. 233-252, Jun. 2021

[3]. Alam.M, Javaid. A, Niyaz. Q &Sun. W, "A deep learning
approach for network intrusion detection system,"
Proceedings of the 9th EAI International Conference on Bio-
inspired Information and Communications Technologies
(formerly BIONETICS), pp. 21-26, Dec. 2015.

[4]. Bailey. D.H,Zhang. Y, Xie. N, Wang. W &Li. X , "Deep
learning based network intrusion detection system with
feature selection method," IEEE Access, vol. 7, pp. 18560-
18575, Feb. 2019.

[5]. Chehri. A,Quy. V.K, Quy. N.M, Han. N.D, and Ban. N.T,
"Innovative trends in the 6G Era: A comprehensive survey of
architecture, applications, technologies, and challenges,"
IEEE Access, vol. 11, pp. 39824-39844, 2023.

[6]. Lashkari. A.HSharafaldin. M, and Ghorbani. A.A, "Toward
generating a new intrusion detection dataset and intrusion
traffic characterization," Proceedings of the 4th International
Conference on Information Systems Security and Privacy
(ICISSP), pp. 108-116, Jan. 2018.

[7]. Lasheng. M, Al-Qatf. M.ILA, Al-Habib. M.O, and Al-Sabahi.
K, "Deep learning approach combining sparse autoencoder
with SVM for network intrusion detection," IEEE Access,
vol. 6, pp. 52843-52856, Sep. 2018.

[8]. Pandey. M et al.,, "The transformational role of GPU
computing and deep learning in drug discovery." Nat. Mach.
Intell., vol. 4, no. 3. pp. 211-221, 2022.

Page | 4

Network Intrusion Detection System Using Hybrid Deep Learning

Available at https://jscer.org

[9]. Yin. Z, and Zhu. Z, "A hybrid model using deep auto-
encoder and one-class SVM for anomaly detection,”
Knowledge-Based Systems, vol. 195, no. 1, 105648, Apr.
2020.

Page | 5

