

Page |1

Journal of Science, Computing and Engineering Research (JSCER)

Volume-7, Issue-11, November 2024.

DOI: https://doi.org/10.46379/jscer.2023.071102

Network Intrusion Detection System Using Hybrid Deep

Learning
1R. KARTHICK, 2J. MOHAMMED ZAYED RAHAMAN, 3S. ABISHEIK, 4A. NAMBI RAJA,

5L. ARUN PRASATH
1-5 Computer Science and Engineering, KLN College of Engineering, Madurai, India,

Article Information

Received : 10 Nov 2024

Revised : 13 Nov 2024

Accepted : 15 Nov 2024

Published : 17 Nov 2024

Corresponding Author:

 Arun prasath

Abstract— This Network Intrusion Detection System (NIDS) are essential for safeguarding

computer networks, analyzing traffic to detect malicious activities. With increasing network

traffic and sophisticated cyber-attacks, traditional rule- and signature-based IDS struggle

with scalability and adaptability. This research examines the use of hybrid deep learning

techniques—like Convolutional Neural Networks (CNNs) combined with Bidirectional Long

Short-Term Memory (BiLSTM)—to enhance NIDS capabilities in detecting both known and

unknown attacks. Recent advancements demonstrate that deep learning-based NIDS improve

detection accuracy and reduce false positives, offering a robust and scalable solution for

network security.

Keywords: anomaly detection, convolutional neural network, cyber attacks, deep learning,

network security

Copyright © 2024: R. Karthick, J. Mohammed Zayed Rahman, S. Abisheik, A. Nambi Raja, L. Arun Prasath, This is an

open access distribution, and reproduction in any medium, provided Access article distributed under the Creative Commons

Attribution License the original work is properly cited License, which permits unrestricted use.

Citation: R. Karthick, J. Mohammed Zayed Rahman, S. Abisheik, A. Nambi Raja, L. Arun Prasath, “Network Intrusion

Detection System Using Hybrid Deep Learning”, Journal of Science, Computing and Engineering Research, 7(11), November

2024.

I. INTRODUCTION

Intrusion Detection is a way of monitoring the events

happening within a network or on a local system to detect

any signs of abnormal or malicious breaching the security or

standard policies. Intrusion Detection Systems (IDSs) are

broadly classified into host-based and network-based. The

former monitors an individual computer system (e.g.,

operating system files and logs) looking for malicious

activities, whereas the latter examines network traffic to

recognize any malicious and anomalous activities that can

be part of an attack. Hybrid deep learning combines multiple

deep learning models or methodologies to enhance

performance, robustness, and adaptability in various

applications. This can involve the combination of different

neural network architectures, such as convolutional neural

networks (CNNs) for image data and recurrent neural

networks (RNNs) for sequential data, allowing for a more

comprehensive analysis of multimodal data.

II. RELATED WORKS

 Programming education is undergoing a revolution

thanks to automated assessment systems and data mining

techniques, which provide predictive analytics,

individualized learning experiences, and thorough insights

into student performance. But conventional approaches

frequently lack hands-on coding experience, necessitating a

more efficient strategy. We suggest OptiCode, a cutting-

edge approach created to close this gap by improving

accessibility and efficacy in programming skill acquisition.

[1] Current method for Network Intrusion Detection System:

The hybrid model overcomes the drawbacks of conventional

signature-based systems by producing synthetic data that

imitates malicious and legitimate traffic, improving the

ability to identify new threats. [2] Detection Systems with

Deep Learning: It examines several architectures, including

Long Short-Term Memory (LSTM) networks and

Convolutional Neural Networks (CNNs), emphasizing their

better detection rates and real-time processing capabilities in

comparison to conventional techniques.

III. PROPOSED SYSTEM

By incorporating cutting-edge AI techniques for

individualized learning and code improvement, OptiCode is

a creative system that improves programming education.

After users choose a programming language and subject,

Jina Embedding converts their queries into numerical

vectors. Large Language Models (LLMs) and Retrieval

Augmented Generation (RAG) are used by the system to

produce precise code snippets that enable interactive

optimizations and corrections. By utilizing real-time data,

this all-inclusive workflow creates an immersive learning

environment and raises the bar for programming education.

Advantages of the Proposed System:

Network Intrusion Detection System Using Hybrid Deep Learning

Available at https://jscer.org

Page | 2

• The hybrid architecture can detect complex attack

patterns that may not be apparent through either spatial or

temporal analysis alone.

• The hybrid model is designed to detect anomalies

and attacks in real-time, allowing for immediate action to be

taken

A. SOFTWARE REQUIREMENTS

1. Python

 Python is like a versatile toolbox for programmers,

offering a wide array of tools and gadgets to tackle virtually

any coding task with ease. Python is a friendly guide

through the dense forest of programming. Its syntax, or

grammar, is designed to be easily understood, making it

accessible even to those venturing into the coding

wilderness for the first time. With Python, you don't need to

20 decipher complex hieroglyphics; instead, you're greeted

with familiar words and phrases, making your journey

smoother and more enjoyable. This programming language

operates like a skilled interpreter, executing your commands

line by line in real-time. Whether you need to manipulate

data, build a website, or train a machine learning model,

Python has a module ready to assist you. These modules act

as trusty companions, offering shortcuts and solutions to

common challenges, saving you time and effort along your

coding expedition. Despite its simplicity, Python is a

powerful language, capable of handling complex tasks with

grace and precision. Like a skilled craftsman, Python allows

you to create intricate structures and designs, whether you're

building a simple script or a sophisticated application.

Python boasts a vibrant and welcoming community of

developers. Here, you'll find support, guidance, and

camaraderie, as you embark on your coding journey together

2. Pandas

 Pandas is an open-source data manipulation and

analysis library for Python that provides data structures and

functions needed to work with structured data seamlessly. It

introduces two primary data structures: Series, which is a

one-dimensional labelled array capable of holding any data

type, and Data Frame, a two-dimensional labelled data

structure similar to a spreadsheet or SQL table. Pandas

makes it easy to clean, transform, and analyse data, allowing

users to perform operations like filtering, grouping,

merging, and reshaping datasets with simple syntax. One of

the key strengths of Pandas is its ability to handle missing

data and time series data, making it a powerful tool for data

scientists and analysts dealing with real-world datasets. The

library supports various file formats for data input and

output, including CSV, Excel, and SQL databases,

facilitating smooth data integration. Additionally, Pandas

leverages the performance of NumPy, making it efficient for

large datasets and complex computations.

3. Tensorflow or PyTorch

 TensorFlow and PyTorch are two of the most

widely used deep learning frameworks that enable

developers to build, train, and deploy complex machine

learning models efficiently. TensorFlow, developed by

Google, provides a robust and scalable platform for large-

scale machine learning applications, offering features such

as automatic differentiation and a flexible architecture that

supports both CPU and GPU computations. Its

comprehensive ecosystem includes tools for model

deployment, such as TensorFlow Serving and TensorFlow

Lite, which facilitate the integration of machine learning

models into production environments. On the other hand,

PyTorch, developed by Facebook, is known for its dynamic

computation graph, which allows for more intuitive model

building and debugging. This feature makes PyTorch

particularly appealing for researchers and developers who

prioritize flexibility and speed during the experimentation

phase. Both frameworks provide extensive libraries and

tools for handling data, defining neural networks, and

optimizing model training, making them ideal for tasks such

as image recognition, natural language processing, and,

importantly, network intrusion detection systems (NIDS)

using hybrid deep learning. By leveraging either

TensorFlow or PyTorch, developers can harness powerful

algorithms and techniques to improve the accuracy and

efficiency of NIDS, ultimately enhancing cybersecurity

measures.

4. Google collab

 Google Collab, or Google Collaboratory, is a

cloud-based platform that enables users to write, execute,

and share Python code directly from their web browser. It is

especially favored in the data science and machine learning

communities for its accessibility and powerful features.

Users can create Jupyter notebooks, which allow for a mix

of code, visualizations, and rich text, making it easy to

document workflows and findings. One of the standout

features of Google Colab is its free access to powerful

computing resources, including GPUs and TPUs, which are

crucial for training complex machine learning models. This

capability democratizes access to high-performance

computing, allowing individuals and teams to work on data-

intensive projects without needing expensive hardware.

Integration with Google Drive streamlines file management,

enabling users to easily save, share, and collaborate on

notebooks in real time. Additionally, Google Collab

supports popular libraries such as TensorFlow, PyTorch, and

scikit-learn, making it a versatile tool for various machine

learning and data analysis tasks. With its user-friendly

interface and collaborative features, Google Collab serves as

an invaluable resource for learners and professionals alike,

fostering experimentation and innovation in the field of data

science. You can run different versions of your model in

Network Intrusion Detection System Using Hybrid Deep Learning

Available at https://jscer.org

Page | 3

parallel by opening new colab sessions or tabs. This is

helpful for hyperparameter tuning and testing different

configurations of your CNN and BiLSTM. The platform is

suitable for both beginners and experienced developers due

to its intuitive interface.

IV. IMPLEMENTATION

The implementation of a Network Intrusion Detection

System (NIDS) using CNN and BiLSTM involves several

key stages, each designed to build a robust model capable of

identifying malicious network activities. Below is an in-

depth overview of the steps involved:

Data Preprocessing

The first step is choosing a comprehensive dataset that

reflects realistic network traffic, such as UNSW-NB15 or

CICIDS2017. These datasets contain labeled instances of

normal and attack traffic, which are essential for training

and testing the NIDS.

The raw dataset may include irrelevant or redundant

features and missing values. Data cleaning ensures these

issues are addressed by removing or imputing missing data

and discarding unnecessary features.

Feature extraction involves selecting relevant attributes

that enhance the model's ability to learn from the data. This

step may include domain-specific knowledge to focus on

features that indicate network behavior.

To maintain uniformity, features are normalized or

standardized. This step helps in scaling numerical data to a

consistent range, improving the convergence rate during

training.

The preprocessed data is divided into training,

validation, and testing sets, ensuring that the model has

separate data for learning, tuning, and evaluation.

CNN Feature Extraction

The initial layer of the model employs a 1D CNN to

identify local dependencies and extract key features from

the input data. This helps in capturing patterns that indicate

potential intrusions.

The convolutional layer is configured with suitable

kernel sizes and a number of filters to optimize feature

detection. ReLU (Rectified Linear Unit) activation functions

are applied to introduce non-linearity, enhancing the model's

capacity to learn complex patterns.

Max-pooling layers follow the convolutional layer to

reduce the feature map's dimensionality, ensuring

computational efficiency and highlighting the most

significant features.

Bidirectional Long Short-Term Memory (BiLSTM)

Layer:

The extracted features from the CNN are fed into a

BiLSTM layer. This type of recurrent neural network

processes data in both forward and backward directions,

enabling the model to learn long-term dependencies and

context within the sequential data.

BiLSTMs are particularly useful in analyzing time-series

data, such as network traffic, where understanding the order

of events is crucial for distinguishing between normal and

malicious activity.

Dropout layers are added after the BiLSTM to prevent

overfitting by randomly dropping a portion of neurons

during each training iteration. This promotes the model's

ability to generalize to new data.

Model Compilation and Training

The model is compiled using an optimizer like Adam or

RMSprop, known for adaptive learning rate properties that

improve convergence. The loss function typically used for

classification tasks is categorical cross-entropy if the

problem is multi-class or binary cross-entropy for binary

classification.

The training phase involves fitting the model to the

training data, with hyperparameters such as the learning

rate, batch size, and number of epochs being tuned for

optimal performance. Techniques like early stopping and

learning rate schedulers can be used to halt training when

the validation performance plateaus, preventing overfitting.

During training, validation data is used to monitor the

model's progress and fine-tune the architecture if necessary.

This step ensures that the model learns effectively and

generalizes well to unseen data.

Model Evaluation

Once trained, the model is evaluated on the test set to

gauge its performance. Metrics such as accuracy, precision,

recall, and F1-score are calculated to assess how well the

NIDS can identify and classify intrusions.

Accuracy measures the overall correct classifications

made by the model.

Precision indicates the proportion of true positive

detections out of all positive detections, measuring the

model’s reliability in identifying attacks.

Recall (Sensitivity) assesses the model's ability to

identify all actual positives (attack instances).

F1-score provides a balance between precision and

recall, giving a single metric that accounts for both false

positives and false negatives.

Optimization and Fine-tuning

Network Intrusion Detection System Using Hybrid Deep Learning

Available at https://jscer.org

Page | 4

Techniques like grid search or random search can be

employed to find the best combination of hyperparameters

(e.g., number of CNN filters, LSTM units, learning rate).

Combining the CNN-BiLSTM model with other

detection approaches or using techniques like stacking can

enhance overall performance.

V. RESULTS

 This is the home page of our system where users are

presented with options to choose programming languages

and text box to ask their question, fill their own logic in the

generated code, code analysis for their own logic code and

some sample questions.

VI. CONCLUSION

The Network Intrusion Detection System (NIDS) using

hybrid deep learning, which integrates Convolutional Neural

Networks (CNN) and Bidirectional Long Short-Term

Memory (BiLSTM), offers an advanced and efficient

approach to real-time intrusion detection. This hybrid model

combines the strengths of CNN, which excels in spatial

feature extraction, and BiLSTM, which is adept at

identifying temporal patterns, to enhance the detection of

both known and unknown network threats. By leveraging

these deep learning models, the NIDS can accurately

identify anomalies in complex network traffic,

distinguishing between benign activities and malicious

intrusions such as Denial of Service (DoS), Distributed

Denial of Service (DDoS), and port scanning attacks.In

conclusion, this hybrid deep learning-based NIDS

demonstrates a highly scalable, adaptable, and reliable

solution for modern network security challenges. Through

extensive unit, functional, and integration testing, it has

proven to be effective in accurately detecting a wide range

of intrusions while maintaining real-time performance,

making it a crucial tool for safeguarding network

infrastructure in today’s ever-evolving cyber threat

landscape.

VII. FUTURE WORKS

There are several potential enhancements that can be made

to further improve the performance and functionality of the

Network Intrusion Detection System (NIDS) using hybrid

deep learning. This could help the system adapt to different

network configurations and types of traffic. Moreover,

introducing unsupervised learning techniques alongside the

current supervised CNN-BiLSTM architecture could

enhance the detection of unknown or novel attacks without

relying solely on labeled data. Another future enhancement

could involve using feature selection techniques such as

Recursive Feature Elimination (RFE), which would

optimize the input features used by the system, improving

accuracy and reducing computational complexity.

REFERENCES

[1]. Al-QatfM. I. A., M. Lasheng, M. O. Al-Habib, and K. Al-

Sabahi, "Deep learning approach combining sparse

autoencoder with SVM for network intrusion detection,"

IEEE Access, vol. 6, pp. 52843-52856, Sep. 2018.

[2]. AltwaijryN, TuraikiAl , "A convolutional neural network for

improved anomaly-based network intrusion detection," Big

Data, vol. 9, no. 3, pp. 233-252, Jun. 2021

[3]. Alam.M, Javaid. A, Niyaz. Q &Sun. W, "A deep learning

approach for network intrusion detection system,"

Proceedings of the 9th EAI International Conference on Bio-

inspired Information and Communications Technologies

(formerly BIONETICS), pp. 21-26, Dec. 2015.

[4]. Bailey. D.H,Zhang. Y, Xie. N, Wang. W &Li. X , "Deep

learning based network intrusion detection system with

feature selection method," IEEE Access, vol. 7, pp. 18560-

18575, Feb. 2019.

[5]. Chehri. A,Quy. V.K, Quy. N.M, Han. N.D, and Ban. N.T,

"Innovative trends in the 6G Era: A comprehensive survey of

architecture, applications, technologies, and challenges,"

IEEE Access, vol. 11, pp. 39824-39844, 2023.

[6]. Lashkari. A.HSharafaldin. M, and Ghorbani. A.A, "Toward

generating a new intrusion detection dataset and intrusion

traffic characterization," Proceedings of the 4th International

Conference on Information Systems Security and Privacy

(ICISSP), pp. 108-116, Jan. 2018.

[7]. Lasheng. M, Al-Qatf. M.I.A, Al-Habib. M.O, and Al-Sabahi.

K, "Deep learning approach combining sparse autoencoder

with SVM for network intrusion detection," IEEE Access,

vol. 6, pp. 52843-52856, Sep. 2018.

[8]. Pandey. M et al., "The transformational role of GPU

computing and deep learning in drug discovery." Nat. Mach.

Intell., vol. 4, no. 3. pp. 211-221, 2022.

Network Intrusion Detection System Using Hybrid Deep Learning

Available at https://jscer.org

Page | 5

[9]. Yin. Z, and Zhu. Z, "A hybrid model using deep auto-

encoder and one-class SVM for anomaly detection,"

Knowledge-Based Systems, vol. 195, no. 1, 105648, Apr.

2020.

