
                                                                                                                                         

Page |1 

  

 

Journal of Science, Computing and Engineering Research (JSCER) 

Volume-7, Issue-11, November 2024. 

DOI: https://doi.org/10.46379/jscer.2023.071102 

Network Intrusion Detection System Using Hybrid Deep 

Learning  
1R. KARTHICK,  2J. MOHAMMED ZAYED RAHAMAN,  3S. ABISHEIK,  4A. NAMBI RAJA,  

5L. ARUN PRASATH  
1-5 Computer Science and Engineering, KLN College of Engineering, Madurai, India,  

Article Information 

Received : 10 Nov 2024 

Revised : 13 Nov 2024 

Accepted : 15 Nov 2024 

Published : 17 Nov 2024 

 

Corresponding Author: 

 Arun prasath 

Abstract— This Network Intrusion Detection System (NIDS) are essential for safeguarding 

computer networks, analyzing traffic to detect malicious activities. With increasing network 

traffic and sophisticated cyber-attacks, traditional rule- and signature-based IDS struggle 

with scalability and adaptability. This research examines the use of hybrid deep learning 

techniques—like Convolutional Neural Networks (CNNs) combined with Bidirectional Long 

Short-Term Memory (BiLSTM)—to enhance NIDS capabilities in detecting both known and 

unknown attacks. Recent advancements demonstrate that deep learning-based NIDS improve 

detection accuracy and reduce false positives, offering a robust and scalable solution for 

network security. 
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I. INTRODUCTION 

Intrusion Detection is a way of monitoring the events 

happening within a network or on a local system to detect 

any signs of abnormal or malicious breaching the security or 

standard policies. Intrusion Detection Systems (IDSs) are 

broadly classified into host-based and network-based. The 

former monitors an individual computer system (e.g., 

operating system files and logs) looking for malicious 

activities, whereas the latter examines network traffic to 

recognize any malicious and anomalous activities that can 

be part of an attack. Hybrid deep learning combines multiple 

deep learning models or methodologies to enhance 

performance, robustness, and adaptability in various 

applications. This can involve the combination of different 

neural network architectures, such as convolutional neural 

networks (CNNs) for image data and recurrent neural 

networks (RNNs) for sequential data, allowing for a more 

comprehensive analysis of multimodal data. 

II. RELATED WORKS 

   Programming education is undergoing a revolution 

thanks to automated assessment systems and data mining 

techniques, which provide predictive analytics, 

individualized learning experiences, and thorough insights 

into student performance. But conventional approaches 

frequently lack hands-on coding experience, necessitating a 

more efficient strategy. We suggest OptiCode, a cutting-

edge approach created to close this gap by improving 

accessibility and efficacy in programming skill acquisition. 

[1] Current method for Network Intrusion Detection System: 

The hybrid model overcomes the drawbacks of conventional 

signature-based systems by producing synthetic data that 

imitates malicious and legitimate traffic, improving the 

ability to identify new threats. [2] Detection Systems with 

Deep Learning: It examines several architectures, including 

Long Short-Term Memory (LSTM) networks and 

Convolutional Neural Networks (CNNs), emphasizing their 

better detection rates and real-time processing capabilities in 

comparison to conventional techniques. 

III. PROPOSED SYSTEM 

By incorporating cutting-edge AI techniques for 

individualized learning and code improvement, OptiCode is 

a creative system that improves programming education. 

After users choose a programming language and subject, 

Jina Embedding converts their queries into numerical 

vectors. Large Language Models (LLMs) and Retrieval 

Augmented Generation (RAG) are used by the system to 

produce precise code snippets that enable interactive 

optimizations and corrections. By utilizing real-time data, 

this all-inclusive workflow creates an immersive learning 

environment and raises the bar for programming education.  

Advantages of the Proposed System: 
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• The hybrid architecture can detect complex attack 

patterns that may not be apparent through either spatial or 

temporal analysis alone. 

• The hybrid model is designed to detect anomalies 

and attacks in real-time, allowing for immediate action to be 

taken 

A. SOFTWARE REQUIREMENTS   

1. Python 

 Python is like a versatile toolbox for programmers, 

offering a wide array of tools and gadgets to tackle virtually 

any coding task with ease. Python is a friendly guide 

through the dense forest of programming. Its syntax, or 

grammar, is designed to be easily understood, making it 

accessible even to those venturing into the coding 

wilderness for the first time. With Python, you don't need to 

20 decipher complex hieroglyphics; instead, you're greeted 

with familiar words and phrases, making your journey 

smoother and more enjoyable. This programming language 

operates like a skilled interpreter, executing your commands 

line by line in real-time. Whether you need to manipulate 

data, build a website, or train a machine learning model, 

Python has a module ready to assist you. These modules act 

as trusty companions, offering shortcuts and solutions to 

common challenges, saving you time and effort along your 

coding expedition. Despite its simplicity, Python is a 

powerful language, capable of handling complex tasks with 

grace and precision. Like a skilled craftsman, Python allows 

you to create intricate structures and designs, whether you're 

building a simple script or a sophisticated application. 

Python boasts a vibrant and welcoming community of 

developers. Here, you'll find support, guidance, and 

camaraderie, as you embark on your coding journey together 

2. Pandas 

 Pandas is an open-source data manipulation and 

analysis library for Python that provides data structures and 

functions needed to work with structured data seamlessly. It 

introduces two primary data structures: Series, which is a 

one-dimensional labelled array capable of holding any data 

type, and Data Frame, a two-dimensional labelled data 

structure similar to a spreadsheet or SQL table. Pandas 

makes it easy to clean, transform, and analyse data, allowing 

users to perform operations like filtering, grouping, 

merging, and reshaping datasets with simple syntax. One of 

the key strengths of Pandas is its ability to handle missing 

data and time series data, making it a powerful tool for data 

scientists and analysts dealing with real-world datasets. The 

library supports various file formats for data input and 

output, including CSV, Excel, and SQL databases, 

facilitating smooth data integration. Additionally, Pandas 

leverages the performance of NumPy, making it efficient for 

large datasets and complex computations. 

3. Tensorflow or PyTorch 

 TensorFlow and PyTorch are two of the most 

widely used deep learning frameworks that enable 

developers to build, train, and deploy complex machine 

learning models efficiently. TensorFlow, developed by 

Google, provides a robust and scalable platform for large-

scale machine learning applications, offering features such 

as automatic differentiation and a flexible architecture that 

supports both CPU and GPU computations. Its 

comprehensive ecosystem includes tools for model 

deployment, such as TensorFlow Serving and TensorFlow 

Lite, which facilitate the integration of machine learning 

models into production environments. On the other hand, 

PyTorch, developed by Facebook, is known for its dynamic 

computation graph, which allows for more intuitive model 

building and debugging. This feature makes PyTorch 

particularly appealing for researchers and developers who 

prioritize flexibility and speed during the experimentation 

phase. Both frameworks provide extensive libraries and 

tools for handling data, defining neural networks, and 

optimizing model training, making them ideal for tasks such 

as image recognition, natural language processing, and, 

importantly, network intrusion detection systems (NIDS) 

using hybrid deep learning. By leveraging either 

TensorFlow or PyTorch, developers can harness powerful 

algorithms and techniques to improve the accuracy and 

efficiency of NIDS, ultimately enhancing cybersecurity 

measures. 

4. Google collab 

 Google Collab, or Google Collaboratory, is a 

cloud-based platform that enables users to write, execute, 

and share Python code directly from their web browser. It is 

especially favored in the data science and machine learning 

communities for its accessibility and powerful features. 

Users can create Jupyter notebooks, which allow for a mix 

of code, visualizations, and rich text, making it easy to 

document workflows and findings. One of the standout 

features of Google Colab is its free access to powerful 

computing resources, including GPUs and TPUs, which are 

crucial for training complex machine learning models. This 

capability democratizes access to high-performance 

computing, allowing individuals and teams to work on data-

intensive projects without needing expensive hardware. 

Integration with Google Drive streamlines file management, 

enabling users to easily save, share, and collaborate on 

notebooks in real time. Additionally, Google Collab 

supports popular libraries such as TensorFlow, PyTorch, and 

scikit-learn, making it a versatile tool for various machine 

learning and data analysis tasks. With its user-friendly 

interface and collaborative features, Google Collab serves as 

an invaluable resource for learners and professionals alike, 

fostering experimentation and innovation in the field of data 

science. You can run different versions of your model in 
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parallel by opening new colab sessions or tabs. This is 

helpful for hyperparameter tuning and testing different 

configurations of your CNN and BiLSTM. The platform is 

suitable for both beginners and experienced developers due 

to its intuitive interface. 

IV. IMPLEMENTATION 

The implementation of a Network Intrusion Detection 

System (NIDS) using CNN and BiLSTM involves several 

key stages, each designed to build a robust model capable of 

identifying malicious network activities. Below is an in-

depth overview of the steps involved: 

Data Preprocessing 

The first step is choosing a comprehensive dataset that 

reflects realistic network traffic, such as UNSW-NB15 or 

CICIDS2017. These datasets contain labeled instances of 

normal and attack traffic, which are essential for training 

and testing the NIDS. 

The raw dataset may include irrelevant or redundant 

features and missing values. Data cleaning ensures these 

issues are addressed by removing or imputing missing data 

and discarding unnecessary features. 

Feature extraction involves selecting relevant attributes 

that enhance the model's ability to learn from the data. This 

step may include domain-specific knowledge to focus on 

features that indicate network behavior. 

To maintain uniformity, features are normalized or 

standardized. This step helps in scaling numerical data to a 

consistent range, improving the convergence rate during 

training. 

The preprocessed data is divided into training, 

validation, and testing sets, ensuring that the model has 

separate data for learning, tuning, and evaluation. 

CNN Feature Extraction 

The initial layer of the model employs a 1D CNN to 

identify local dependencies and extract key features from 

the input data. This helps in capturing patterns that indicate 

potential intrusions. 

The convolutional layer is configured with suitable 

kernel sizes and a number of filters to optimize feature 

detection. ReLU (Rectified Linear Unit) activation functions 

are applied to introduce non-linearity, enhancing the model's 

capacity to learn complex patterns. 

Max-pooling layers follow the convolutional layer to 

reduce the feature map's dimensionality, ensuring 

computational efficiency and highlighting the most 

significant features. 

Bidirectional Long Short-Term Memory (BiLSTM) 

Layer: 

The extracted features from the CNN are fed into a 

BiLSTM layer. This type of recurrent neural network 

processes data in both forward and backward directions, 

enabling the model to learn long-term dependencies and 

context within the sequential data. 

BiLSTMs are particularly useful in analyzing time-series 

data, such as network traffic, where understanding the order 

of events is crucial for distinguishing between normal and 

malicious activity. 

Dropout layers are added after the BiLSTM to prevent 

overfitting by randomly dropping a portion of neurons 

during each training iteration. This promotes the model's 

ability to generalize to new data. 

Model Compilation and Training 

The model is compiled using an optimizer like Adam or 

RMSprop, known for adaptive learning rate properties that 

improve convergence. The loss function typically used for 

classification tasks is categorical cross-entropy if the 

problem is multi-class or binary cross-entropy for binary 

classification. 

The training phase involves fitting the model to the 

training data, with hyperparameters such as the learning 

rate, batch size, and number of epochs being tuned for 

optimal performance. Techniques like early stopping and 

learning rate schedulers can be used to halt training when 

the validation performance plateaus, preventing overfitting. 

During training, validation data is used to monitor the 

model's progress and fine-tune the architecture if necessary. 

This step ensures that the model learns effectively and 

generalizes well to unseen data. 

Model Evaluation 

Once trained, the model is evaluated on the test set to 

gauge its performance. Metrics such as accuracy, precision, 

recall, and F1-score are calculated to assess how well the 

NIDS can identify and classify intrusions. 

Accuracy measures the overall correct classifications 

made by the model. 

Precision indicates the proportion of true positive 

detections out of all positive detections, measuring the 

model’s reliability in identifying attacks. 

Recall (Sensitivity) assesses the model's ability to 

identify all actual positives (attack instances). 

F1-score provides a balance between precision and 

recall, giving a single metric that accounts for both false 

positives and false negatives. 

Optimization and Fine-tuning 



 

 

Network Intrusion Detection System Using Hybrid Deep Learning 

 

Available at https://jscer.org 

 

 

 

Page | 4  

 

 

 

 

 

Techniques like grid search or random search can be 

employed to find the best combination of hyperparameters 

(e.g., number of CNN filters, LSTM units, learning rate). 

Combining the CNN-BiLSTM model with other 

detection approaches or using techniques like stacking can 

enhance overall performance. 

V.  RESULTS 

  This is the home page of our system where users are 

presented with options to choose programming languages 

and text box to ask their question, fill their own logic in the 

generated code, code analysis for their own logic code and 

some sample questions. 

 

VI. CONCLUSION 

The Network Intrusion Detection System (NIDS) using 

hybrid deep learning, which integrates Convolutional Neural 

Networks (CNN) and Bidirectional Long Short-Term 

Memory (BiLSTM), offers an advanced and efficient 

approach to real-time intrusion detection. This hybrid model 

combines the strengths of CNN, which excels in spatial 

feature extraction, and BiLSTM, which is adept at 

identifying temporal patterns, to enhance the detection of 

both known and unknown network threats. By leveraging 

these deep learning models, the NIDS can accurately 

identify anomalies in complex network traffic, 

distinguishing between benign activities and malicious 

intrusions such as Denial of Service (DoS), Distributed 

Denial of Service (DDoS), and port scanning attacks.In 

conclusion, this hybrid deep learning-based NIDS 

demonstrates a highly scalable, adaptable, and reliable 

solution for modern network security challenges. Through 

extensive unit, functional, and integration testing, it has 

proven to be effective in accurately detecting a wide range 

of intrusions while maintaining real-time performance, 

making it a crucial tool for safeguarding network 

infrastructure in today’s ever-evolving cyber threat 

landscape. 

VII. FUTURE WORKS 

There are several potential enhancements that can be made 

to further improve the performance and functionality of the 

Network Intrusion Detection System (NIDS) using hybrid 

deep learning.  This could help the system adapt to different 

network configurations and types of traffic. Moreover, 

introducing unsupervised learning techniques alongside the 

current supervised CNN-BiLSTM architecture could 

enhance the detection of unknown or novel attacks without 

relying solely on labeled data. Another future enhancement 

could involve using feature selection techniques such as 

Recursive Feature Elimination (RFE), which would 

optimize the input features used by the system, improving 

accuracy and reducing computational complexity. 
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