

Journal of Science, Computing and Engineering Research (JSCER) Volume-7, Issue-12, December 2024.

DOI: https://doi.org/10.46379/jscer.2023.071202

Identifying An Special Appraoch for Health Informatics Based on Multi Machine Learning Techniques

Anuj Sharma, Naresh Jadav

Assistant Professor, venkateshwara College of Engineering, EEE Dept, Kannor, India

Article Information

Received : 10 Dec 2024 Revised : 13 Dec 2024

Accepted : 15 Dec 2024 Published : 17 Dec 2024

Corresponding Author:

Anuj Sharma , Naresh Jadav

Abstract— Health-care organisations may foresee patterns in a patient's medical condition and behaviour by using data mining, which entails examining several options and establishing connections between apparently unrelated bits of information. The volume and variety of raw data generated by healthcareinstitutions make it difficult to make sense of everything. Data must be collected and stored in an organised manner, as well as integrated, in order to develop a unified medical information system. In health, data mining permits the examination of a diverse set ofdata models that are unavailable or obscured by conventional analytical techniques. The objective of this research is to take a diabetic health dataset and analyse it using machine learning techniques to increase diabetesprediction accuracy

Keywords: Ddataset, health, machine learning

Copyright © 2024: Anuj Sharma, Naresh Jadav, This is an open access distribution, and reproduction in any medium, provided Access article distributed under the Creative Commons Attribution License the original work is properly cited License, which permits unrestricted use.

Citation: R Anuj Sharma, **Naresh Jadav**, "Identifying An Special Appraoch for Health Informatics Based on Multi Machine Learning Techniques", Journal of Science, Computing and Engineering Research, 7(12), December 2024.

I. INTRODUCTION

Using self-learning neural networks, deep learning programmes can find, recognise, and classify malignant tumours in photos. Deep learning, for example, is fast gaining favour in radiology and medical imaging as a subset of sophisticated machine learning that models thehuman brain's functioning. Machine learning algorithms can now detect anomalies in images that aren't visible to the naked eye, assisting in disease diagnosis and treatment. Healthcare will continue to be revolutionised by breakthroughs in machine learning. Predictive analytics for predicting breast cancer recurrence using medical data and photographs is currently being developed, as is a diagnostic tool for diabetic retinopathy. On a wide scale, The area of health informatics (HI) aspires to build a vast network of connections between seemingly unrelated concepts. Typically, a healthcare dataset is found to be insufficient & noisy: As a result, in the realmof software engineering, data reading from dataset linkage has historically failed. Machinelearning (ML) is a rapidly increasing field of computer science because of its capacity tostore enormous amounts of information. Several machine learning (ML) technologies could be utilized to examine information & generate insights that could messi assist employees and clinicians enhance the quality of their work; however, there is currently no developerfriendly solution available. Diabetes is one of the world's worst illnesses. Diabetes may be caused by a number of factors, including obesity, hyperglycemia, and other disorders. It affects the insulin hormone, causing crabs' metabolisms to become irregular

and blood sugar levels to fall. Diabetes is caused by an inadequate amount of insulin produced by the body. Diabetes affects around 422 million people globally, with the majority living in low- and middle-income nations, according to the World Health Organization (WHO). By 2030, this figure may have risen to 490 billion. Diabetes, on the other hand, is common in many nations, including Canada, China & India. India's genuine diabetes population is 40 million, owing to the country's population expansion tomore than 100 million persons. Diabetes is a leading cause of mortality globally. Early detection & treatment of disorders such as diabetes may help decrease their progression and extend a person's life. To do this, this research studies diabetes prediction using a number of risk factors for the condition. Thisis accomplished by using the Pima Indian Diabetes Dataset and anticipating diabetes onset using a variety of Machine Learning classification and ensemble methodologies. Machine Learning is a technique for training computers and other devices to do certain tasks.

Using self-learning neural networks, deep learning programmes can find, recognise, and classify malignant tumours in photos. Deep learning, for example, is fast gaining favour in radiology and medical imaging as a subset of sophisticated machine learning that models thehuman brain's functioning. Machine learning algorithms can now detect anomalies in images that aren't visible to the naked eye, assisting in disease diagnosis and treatment. Healthcare will continue to be revolutionised by breakthroughs in machine learning. Predictive analytics for predicting breast cancer recurrence using medical data and photographs is

Available at https://jscer.org

currently being developed, as is a diagnostic tool for diabetic retinopathy. On a wide scale, The area of health informatics (HI) aspires to build a vast network of connections between seemingly unrelated concepts. Typically, a healthcare dataset is found to be insufficient & noisy; As a result, in the realmof software engineering, data reading from dataset linkage has historically failed. Machinelearning (ML) is a rapidly increasing field of computer science because of its capacity tostore enormous amounts of information. Several machine learning (ML) technologies could be utilized to examine information & generate insights that could messi assist employees and clinicians enhance the quality of their work; however, there is currently no developerfriendly solution available. Diabetes is one of the world's worst illnesses. Diabetes may be caused by a number of factors, including obesity, hyperglycemia, and other disorders. It affects the insulin hormone, causing crabs' metabolisms to become irregular and blood sugar levels to fall.Diabetes is caused by an inadequate amount ofinsulin produced by the body. Diabetes affects around 422 million people globally, with the majority living in low- and middle-income nations, according to the World Health Organization (WHO). By 2030, this figure may have risen to 490 billion. Diabetes, on the other hand, is common in many nations, including Canada, China & India. India's genuine diabetes population is 40 million, owing to the country's population expansion tomore than 100 million persons. Diabetes is a leading cause of mortality globally. Early detection & treatment of disorders such as diabetes may help decrease their progression and extend a person's life. To do this, this research studies diabetes prediction using a number of risk factors for the condition. This is accomplished by using the Pima Indian Diabetes Dataset and anticipating diabetes onset using a variety of Machine Learning classification and ensemble methodologies. Machine Learning is a technique for training computers and other devices to do certain tasks.

Comparator is a circuit that output is binary information depending upon the comparison of two input voltages here the comparison in between analog voltage and reference voltage. Analog voltage is greater than reference voltage, and then comparator output is logic '1'. The comparator output is logic '0', when analog voltage is less than reference voltage. Comparators are effectively used in analog to digital (ADC) converters. In analog to digital conversion process [1], the analog voltage is converted in to samples for getting accuracy. Those samples are given to set of comparators in order to achieve equivalent binary information. The schematic of

II. RELATED WORKS

A possible method for improving accuracy isto use an extreme machine learning algorithm to informatics of health prediction. The extreme learning machine (ELM) is a

cutting- edge learning method that employs feedforward neural networks with a single hidden layer. ELM is a riskminimization approach that may be learned in a single iteration and is based on empirical risk minimization theory. Many rounds and local reductions are avoided with this method. To improve illness prediction in health-caresystems and reduce the time it takes toanticipate disease, the author of the reference base work [1] employs software engineering and machine learning methodologies. As a result of the growing number of patients, there are not enough hospitals or beds to accommodate them. By utilising software and machine learning algorithms, this problem of predicting disease in less time can be solved. SEMLHI is the title of the author's intended paper (where SE refers to software & ML refers to machine learning & HI refers to health data). SEMLHI, according to the author, is made up of four components. Health Informatics Data: Health Informatics Data: Machine Learning models must be built utilising datasets in order to predict anydisease. This sort of information can corrupt machine learning expectation precision. To resolve this issue, the author is applying PREPROCESSING to medical care information to eliminate all absent and invalid qualities and afterward changing nonnumeric information over to numeric information utilizing Python SKLEARN PREPROCESSING classes. This dataset frequently has extra columns or attributes, which the author removes using a dimensionality reduction technique known as PCA. PCA (principal component analysis) eliminates superfluous features from a dataset & retains just those that are critical for accurate prediction. Author employs a variety of machine learning methods in this lesson, including Linear SVC, Logistic Regression, Random Forest & KNN are all examples of multinomial Naive Bayes. Random Forest, Logistic Regression, and KNN are all examples of multinomial Naive Bayes & then apply the train model to fresh test data to do prediction. By using the aforementioned methods, you may teach a computer to learn and anticipate without the assistance of a person. Model of a Machine Algorithm: After developing the models described above, Fresh test data could be used by the author to predict whether a patient's lab results will be positive or negative. Software: Using software quality assurance, unit testing, and software verification, developers utilise this module to test the dependability of the above modules.

A possible method for improving accuracy isto use an extreme machine learning algorithm to informatics of health prediction. The extreme learning machine (ELM) is a cutting- edge learning method that employs feedforward neural networks with a single hidden layer. ELM is a risk-minimization approach that may be learned in a single iteration and is based on empirical risk minimization theory. Many rounds and local reductions are avoided with this method. To improve illness prediction in health-caresystems and reduce the time it takes toanticipate disease, the author

Available at https://jscer.org

of the reference base work [1] employs software engineering and machine learning methodologies. As a result of the growing number of patients, there are not enough hospitals or beds to accommodate them. By utilising software and machine learning algorithms, this problem of predicting disease in less time can be solved. SEMLHI is the title of the author's intended paper (where SE refers to software & ML refers to machine learning & HI refers to health data). SEMLHI, according to the author, is made up of four components. Health Informatics Data: Health Informatics Data: Machine Learning models must be built utilising datasets in order to predict anydisease. This sort of information can corrupt machine learning expectation precision. To resolve this issue, the author is applying PREPROCESSING to medical care information to eliminate all absent and invalid qualities and afterward changing nonnumeric information over to numeric information utilizing Python SKLEARN PREPROCESSING classes. This dataset frequently has extra columns or attributes, which the author removes using a dimensionality reduction technique known as PCA. PCA (principal component analysis) eliminates superfluous features from a dataset & retains just those that are critical for accurate prediction. Author employs a variety of machine learning methods in this lesson, including Linear SVC, Logistic Regression, Random Forest & KNN are all examples of multinomial Naive Bayes. Random Forest, Logistic Regression, and KNN are all examples of multinomial Naive Bayes & then apply the train model to fresh test data to do prediction. By using the aforementioned methods, you may teach a computer to learn and anticipate without the assistance of a person. Model of a Machine Algorithm: After developing the models described above, Fresh test data could be used by the author to predict whether a patient's lab results will be positive or negative. Software: Using software quality assurance, unit testing, and software verification, developers utilise this module to test the dependability of the above modules.

A possible method for improving accuracy isto use an extreme machine learning algorithm to informatics of health prediction. The extreme learning machine (ELM) is a cutting- edge learning method that employs feedforward neural networks with a single hidden layer. ELM is a riskminimization approach that may be learned in a single iteration and is based on empirical risk minimization theory. Many rounds and local reductions are avoided with this method. To improve illness prediction in health-caresystems and reduce the time it takes to anticipate disease, the author of the reference base work [1] employs software engineering and machine learning methodologies. As a result of the growing number of patients, there are not enough hospitals or beds to accommodate them. By utilising software and machine learning algorithms, this problem of predicting disease in less time can be solved. SEMLHI is the title of the author's intended paper (where SE refers to software & ML

refers to machine learning & HI refers to health data). SEMLHI, according to the author, is made up of four components. Health Informatics Data: Health Informatics Data: Machine Learning models must be built utilising datasets in order to predict anydisease. This sort of information can corrupt machine learning expectation precision. To resolve this issue, the author is applying PREPROCESSING to medical care information to eliminate all absent and invalid qualities and afterward changing nonnumeric information over to numeric information utilizing Python SKLEARN PREPROCESSING classes. This dataset frequently has extra columns or attributes, which the author removes using a dimensionality reduction technique known as PCA. PCA (principal component analysis) eliminates superfluous features from a dataset & retains just those that are critical for accurate prediction. Author employs a variety of machine learning methods in this lesson, including Linear SVC, Logistic Regression, Random Forest & KNN are all examples of multinomial Naive Bayes. Random Forest, Logistic Regression, and KNN are all examples of multinomial Naive Bayes & then apply the train model to fresh test data to do prediction. By using the aforementioned methods, you may teach a computer to learn and anticipate without the assistance of a person. Model of a Machine Algorithm: After developing the models described above, Fresh test data could be used by the author to predict whether a patient's lab results will be positive or negative. Software: Using software quality assurance, unit testing, and software verification, developers utilise this module to test the dependability of the above modules.

III. METHODOLOGY

Model of a Machine Algorithm: After developing the models described above, Fresh test data could be used by the author to predict whether a patient's lab results will be positive or negative. Software: Using software quality assurance, unit testing, and software verification, developers utilise this module to test the dependability of the above modules. To execute this approach, the author recommends work that uses a variety of dataset sizes and classification, clustering, and regression. The author uses the Palestine Hospital dataset, which is not available on the internet and which the author does not publish, thus the author uses the INDIAN DIABETES dataset instead. The extreme machine method is used to a health dataset in this paper. With only one hidden layer, the Extreme Learning Machine is a breakthrough feedforward neural network technique (ELM). When compared totraditional neural network learning methods, this methodology avoids the slow training speed and over-fitting concerns. Extreme learning machines have a single layer ofhidden nodes, or multiple layers of hiddennodes, from which the hidden nodes'parameters are learned & They can have asingle layer of concealed nodes or numerous levels. They are employed in procedures likeas regression, classification, grouping,

Available at https://jscer.org

compression, sparse approximatio & feature learning. The parameters of hidden nodes arelearned from a single layer of hidden nodes, ormultiple layers of hidden nodes, in extremelearning machines. A multi-layer perceptron isanother name for it (MLP). An MLP, oftenknown as a "vanilla" neural network, is a far more basic form of today's more complicatedmodels. However, The approaches it pioneered cleared the

Model of a Machine Algorithm: After developing the models described above, Fresh test data could be used by the author to predict whether a patient's lab results will be positive or negative. Software: Using software quality assurance, unit testing, and software verification, developers utilise this module to test the dependability of the above modules. To execute this approach, the author recommends work that uses a variety of dataset sizes and classification, clustering, and regression. The author uses the Palestine Hospital dataset, which is not available on the internet and which the author does not publish, thus the author uses the INDIAN DIABETES dataset instead. The extreme machine method is used to a health dataset in this paper. With only one hidden layer, the Extreme Learning Machine is a breakthrough feedforward neural network learning technique (ELM). When compared totraditional neural network learning methods, this methodology avoids the slow training speed and over-fitting concerns. Extreme learning machines have a single layer ofhidden nodes, or multiple layers of hiddennodes, from which the hidden nodes'parameters are learned & They can have a single layer of concealed nodes or numerous levels. They are employed in procedures likeas regression, classification, grouping, compression, sparse approximatio & feature learning. The parameters of hidden nodes arelearned from a single layer of hidden nodes, ormultiple layers of hidden nodes, in extremelearning machines. A multi-layer perceptron isanother name for it (MLP). An MLP, oftenknown as a "vanilla" neural network, is a far more basic form of today's more complicated models. However, The approaches it pioneered cleared the

Model of a Machine Algorithm: After developing the models described above, Fresh test data could be used by the author to predict whether a patient's lab results will be positive or negative. Software: Using software quality assurance, unit testing, and software verification, developers utilise this module to test the dependability of the above modules. To execute this approach, the author recommends work that uses a variety of dataset sizes and classification, clustering, and regression. The author uses the Palestine Hospital dataset, which is not available on the internet and which the author does not publish, thus the author uses the INDIAN DIABETES dataset instead. The extreme machine method is used to a health dataset in this paper. With only one hidden layer, the Extreme Learning Machine is a breakthrough feedforward neural network learning

technique (ELM). When compared totraditional neural network learning methods, this methodology avoids the slow training speed and over-fitting concerns. Extreme learning machines have a single layer ofhidden nodes, or multiple layers of hiddennodes, from which the hidden nodes'parameters are learned & They can have asingle layer of concealed nodes or numerous levels. They are employed in procedures likeas regression, classification, grouping, compression, sparse approximatio & feature learning. The parameters of hidden nodes arelearned from a single layer of hidden nodes, ormultiple layers of hidden nodes, in extremelearning machines. A multi-layer perceptron isanother name for it (MLP). An MLP, oftenknown as a "vanilla" neural network, is a far more basic form of today's more complicated models. However, The approaches it pioneered cleared the

door for the development of muchmore powerful neural networks. A multi-layered perceptron is composed of interconnected neurons that interact with oneanother, much as the human brain does. Eachneuron has a numerical value assigned to it. The network may be divided into three majorlayers. ELM is a single-hidden-layer feed-forward neural network (SLFN). The SLFN'sefficiency should be sufficient to allow foradditional learning when using data like threshold level, weight, and activation functionto construct a system. The ELM (extreme learning machine) is a useful tool for swiftly training single-layer feed-forward neural networks (SLFNs). In recent years, Combining ELM with autoencoders to extract features fromunlabeled data has emerged as an intriguing new method, thanks to the progress of unsupervised learning methodologies. In batch and sequential learning, the extreme learning machine (ELM) is frequently utilised, &because of its quick and efficient learning pace, rapid convergence, great generalisation capacity, and ease of implementation, incremental learning is popula. During the evolution of the standard ELM, numerous improved ELM algorithms have been developed, and the ELM's applicability has broadened from supervised to semi-supervised to unsupervised learning, among other things. The picture illustrates the concept of extreme learning by depicting inputs, outputs, and several hidden lavers.

door for the development of muchmore powerful neural networks. A multi-layered perceptron is composed of interconnected neurons that interact with oneanother, much as the human brain does. Eachneuron has a numerical value assigned to it. The network may be divided into three majorlayers. ELM is a single-hidden-layer feed-forward neural network (SLFN). The SLFN'sefficiency should be sufficient to allow foradditional learning when using data like threshold level, weight, and activation functionto construct a system. The ELM (extreme learning machine) is a useful tool for swiftly training single-layer feed-forward neural networks (SLFNs). In recent years, Combining ELM

Identifying An Special Appraoch for Health Informatics Based on Multi Machine Learning Techniques

Available at https://jscer.org

with autoencoders to extract features fromunlabeled data has emerged as an intriguing new method, thanks to the progress of unsupervised learning methodologies. In batch and sequential learning, the extreme learning machine (ELM) is frequently utilised, &because of its quick and efficient learning pace, rapid convergence, great generalisation capacity, and ease of implementation, incremental learning is popula. During the evolution of the standard ELM, numerous improved ELM algorithms have been developed, and the ELM's applicability has broadened from supervised to semi-supervised to unsupervised learning, among other things. The picture illustrates the concept of extreme learning by depicting inputs, outputs, and several hidden layers.

door for the development of muchmore powerful neural networks. A multi-layered perceptron is composed of interconnected neurons that interact with oneanother, much as the human brain does. Eachneuron has a numerical value assigned to it. The network may be divided into three majorlayers. ELM is a single-hidden-layer feed-forward neural network (SLFN). The SLFN'sefficiency should be sufficient to allow foradditional learning when using data like threshold level, weight, and activation functionto construct a system. The ELM (extreme learning machine) is a useful tool for swiftly training single-layer feed-forward neural networks (SLFNs). In recent years, Combining ELM with autoencoders to extract features fromunlabeled data has emerged as an intriguing new method, thanks to the progress of unsupervised learning methodologies. In batch and sequential learning, the extreme learning machine (ELM) is frequently utilised, &because of its quick and efficient learning pace, rapid convergence, great generalisation capacity, and ease of implementation, incremental learning is popula. During the evolution of the standard ELM, numerous improved ELM algorithms have been developed, and the ELM's applicability has broadened from supervised to semi-supervised to unsupervised learning, among other things. The picture illustrates the concept of extreme learning by depicting inputs, outputs, and several hidden layers.

). In recent years, Combining ELM with autoencoders to extract features fromunlabeled data has emerged as an intriguing new method, thanks to the progress of unsupervised learning methodologies. In batch and sequential learning, the extreme learning machine (ELM) is frequently utilised, &because of its quick and efficient learning pace, rapid convergence, great generalisation capacity, and ease of implementation, incremental learning is popula. During the evolution of the standard ELM, numerous improved ELM algorithms have been developed, and the ELM's applicability has broadened from supervised to semi-supervised to unsupervised learning, among other things. The picture illustrates the concept of extreme

learning by depicting inputs, outputs, and several hidden layers

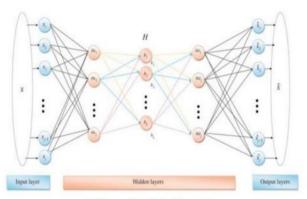


Figure 1: ELM Layers

IV. RESULTS AND DISCUSSIONS

Figure 2: Running all ML Algorithms

The extreme machine learning result is displayed on the screen above, as well as the machine learning method's maximumpercentage of efficiency.

Identifying An Special Appraoch for Health Informatics Based on Multi Machine Learning Techniques

Available at https://jscer.org

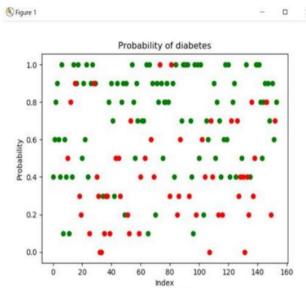


Figure 3: Probability Chart

The probability of diabetes is presented in the above screen, with red indicating yes and green indicating no.

Figure 4: Loading Test Data

When the test method is run, the screen shown above appears. The test data must be entered for the test operations.

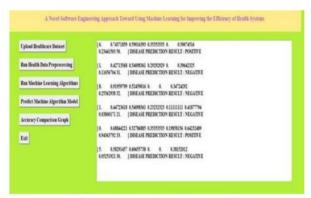


Figure 5: Running Test results

The diabetes positive and negative prediction result for the test loaded data is displayed on the screen above.

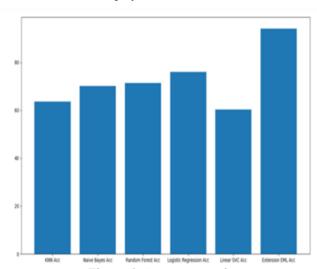


Figure 6: Accuracy results

The comparison of the extreme learning algorithm with other algorithms may be seen on the screen above. It demonstrates that the extreme learning algorithm performs best for diabetes prediction on the hospital dataset.

V. CONCLUSION

The purpose of this work is to demonstrate how an extreme machine learning approachcan be used to significantly increase the accuracy of diabetes prediction utilising a health dataset. Due to the extreme learning machine's (ELM) quick convergence, high generalisation ability, and simplicity of building, Batch learning, sequential learning, and incremental learning are all examples of how it's used. ELM (extreme learningmachine) is a highly efficient and effective learning algorithm for feed forward neural networks with only one hidden layer. In compared to other conventional neural network approaches, it is less prone to overfitting and requires less training time. With only one

iteration of the learning process,ELM is effective, according to empirical risk minimization theory REFERENCES

- [1]. P. Nirmala, T. Manimegalai, J. R. Arunkumar, S. Vimala, G. Vinoth Rajkumar, Raja Raju, "A Mechanism for Detecting the Intruder in the Network through a Stacking Dilated CNN Model", Wireless Communications and Mobile Computing, vol. 2022, Article ID 1955009, 13 pages, 2022. https://doi.org/10.1155/2022/1955009.
- [2]. D. Sathyanarayanan, T. S. Reddy, A. Sathish, P. Geetha, J. R. Arunkumar and S. P. K. Deepak, "American Sign Language Recognition System for Numerical and Alphabets," 2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE), Chennai, India, 2023, pp. 1-6, doi: 10.1109/RMKMATE59243.2023.10369455.
- [3]. J. R. Arunkumar, Tagele berihun Mengist, 2020" Developing Ethiopian Yirgacheffe Coffee Grading Model using a Deep Learning Classifier" International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-9 Issue-4, February 2020. DOI: 10.35940/ijitee.D1823.029420.
- [4]. Ashwini, S., Arunkumar, J.R., Prabu, R.T. et al. Diagnosis and multi-classification of lung diseases in CXR images using optimized deep convolutional neural network. Soft Comput (2023). https://doi.org/10.1007/s00500-023-09480-3
- [5]. J.R.Arunkumar, Dr.E.Muthukumar," A Novel Method to Improve AODV Protocol for WSN" in Journal of Engineering Sciences" ISSN NO: 0377-9254Volume 3, Issue 1, Jul 2012.
- [6]. R. K, A. Shameem, P. Biswas, B. T. Geetha, J. R. Arunkumar and P. K. Lakineni, "Supply Chain Management Using Blockchain: Opportunities, Challenges, and Future Directions," 2023 Second International Conference on Informatics (ICI), Noida, India, 2023, pp. 1-6, doi: 10.1109/ICI60088.2023.10421633.
- [7]. Arunkumar, J. R. "Study Analysis of Cloud Security Chanllenges and Issues in Cloud Computing Technologies." Journal of Science, Computing and Engineering Research 6.8 (2023): 06-10.
- [8]. J. R. Arunkumar, R. Raman, S. Sivakumar and R. Pavithra, "Wearable Devices for Patient Monitoring System using IoT," 2023 8th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2023, pp. 381-385, doi: 10.1109/ICCES57224.2023.10192741.
- [9]. S. Sugumaran, C. Geetha, S. S, P. C. Bharath Kumar, T. D. Subha and J. R. Arunkumar, "Energy Efficient Routing Algorithm with Mobile Sink Assistance in Wireless Sensor Networks," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ACCAI58221.2023.10201142.
- [10].R. S. Vignesh, V. Chinnammal, Gururaj.D, A. K. Kumar, K. V. Karthikeyan and J. R. Arunkumar, "Secured Data Access and Control Abilities Management over Cloud Environment using Novel Cryptographic Principles," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ACCAI58221.2023.10199616.

- [11].Syamala, M., Anusuya, R., Sonkar, S.K. et al. Big data analytics for dynamic network slicing in 5G and beyond with dynamic user preferences. Opt Quant Electron 56, 61 (2024). https://doi.org/10.1007/s11082-023-05663-2
- [12].Krishna Veni, S. R., and R. Anusuya. "Design and Study Analysis Automated Recognition system of Fake Currency Notes." Journal of Science, Computing and Engineering Research 6.6 (2023): 16-20.
- [13].V. RamKumar, S. Shanthi, K. S. Kumar, S. Kanageswari, S. Mahalakshmi and R. Anusuya, "Internet of Things Assisted Remote Health and Safety Monitoring Scheme Using Intelligent Sensors," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ACCAI58221.2023.10199766.
- [14].R. S. Vignesh, R. Sankar, A. Balaji, K. S. Kumar, V. Sharmila Bhargavi and R. Anusuya, "IoT Assisted Drunk and Drive People Identification to Avoid Accidents and Ensure Road Safety Measures," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ACCAI58221.2023.10200809.
- [15].I. Chandra, G. Sowmiya, G. Charulatha, S. D, S. Gomathi and R. Anusuya, "An efficient Intelligent Systems for Low-Power Consumption Zigbee-Based Wearable Device for Voice Data Transmission," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ICECONF57129.2023.10083856.
- [16].G. Karthikeyan, D. T. G, R. Anusuya, K. K. G, J. T and R. T. Prabu, "Real-Time Sidewalk Crack Identification and Classification based on Convolutional Neural Network using Thermal Images," 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, 2022, pp. 1266-1274, doi: 10.1109/ICACRS55517.2022.10029202.
- [17].R. Meena, T. Kavitha, A. K. S, D. M. Mathew, R. Anusuya and G. Karthik, "Extracting Behavioral Characteristics of College Students Using Data Mining on Big Data," 2023 International Conference on Artificial Intelligence and Knowledge Discovery Concurrent in Engineering (ICECONF), Chennai, India, 2023. pp. 1-7, 10.1109/ICECONF57129.2023.10084276.
- [18].S. Bharathi, A. Balaji, D. Irene. J, C. Kalaivanan and R. Anusuya, "An Efficient Liver Disease Prediction based on Deep Convolutional Neural Network using Biopsy Images," 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2022, pp. 1141-1147, doi: 10.1109/ICOSEC54921.2022.9951870.
- [19] I. Chandra, G. Sowmiya, G. Charulatha, S. D, S. Gomathi and R. Anusuya, "An efficient Intelligent Systems for Low-Power Consumption Zigbee-Based Wearable Device for Voice Data Transmission," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ICECONF57129.2023.10083856.
- [20].Revathi, S., et al. "Developing an Infant Monitoring System using IoT (INMOS)." International Scientific Journal of Contemporary Research in Engineering Science and Management 6.1 (2021): 111-115.

Identifying An Special Appraoch for Health Informatics Based on Multi Machine Learning Techniques

Available at https://jscer.org

- [21].R. K, A. Shameem, P. Biswas, B. T. Geetha, J. R. Arunkumar and P. K. Lakineni, "Supply Chain Management Using Blockchain: Opportunities, Challenges, and Future Directions," 2023 Second International Conference on Informatics (ICI), Noida, India, 2023, pp. 1-6, doi: 10.1109/ICI60088.2023.10421633.
- [22].J.R.Arunkumar. "Comprehensice Analysis of Security Issues in Cloud Computing Technologies", Journal of Science, Computing and Engineering Research, 6(5), 06-10, June 2023.
- [23].S. Sugumaran, C. Geetha, S. S, P. C. Bharath Kumar, T. D. Subha and J. R. Arunkumar, "Energy Efficient Routing Algorithm with Mobile Sink Assistance in Wireless Sensor Networks," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ACCAI58221.2023.10201142.
- [24] I. Chandra, K. V. Karthikeyan, R. V, S. K, M. Tamilselvi and J. R. Arunkumar, "A Robust and Efficient Computational Offloading and Task Scheduling Model in Mobile Cloud Computing," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ICECONF57129.2023.10084293.
- [25].R. S. Vignesh, A. Kumar S, T. M. Amirthalakshmi, P. Delphy, J. R. Arunkumar and S. Kamatchi, "An Efficient and Intelligent Systems for Internet of Things Based Health Observance System for Covid 19 Patients," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ICECONF57129.2023.10084066.
- [26].DC Jullie Josephine, J Sudhakar, T Helan Vidhya, R Anusuya, G Ramkumar, "An Improved Multi class Breast cancer classification and Abnormality Detection based on Modified Deep Learning Neural Network Principles", Deep Learning in Biomedical Signal and Medical Imaging, CRC Press, Taylor and Francis, 2024.
- [27].R. Anusuya, Pragya Vashishtha, "Real Automatic Number Plate Image Detection With Yolo Algorithms", Journal of Science, Computing and Engineering Research, 7(7), July 2024.

