Journal of Science, Computing and Engineering Research (JSCER)

Volume-7, Issue-12, December 2024.

DOI: https://doi.org/10.46379/jscer.2023.071202

Presentation Assessment of RCC Retentive Wall Under Active Forces With Soil Construction Interface

R Aarav Krishna, Auyan Yusuf

Assistant Professor, Kodagu Universityt, Kushalnagar, India

Article Information

Received : 10 Dec 2024
Revised : 13 Dec 2024
Accepted : 15 Dec 2024
Published : 17 Dec 2024

Corresponding Author:

G.

Abstract— In current engineering practice the design methods for earth retaining walls under seismic conditions are mostly empirical. Dynamic earth pressures are calculated assuming prescribed seismic coefficient acting in the horizontal and vertical directions using time history analysis Structural dynamic deals with method to determine the stresses and displacement of structure subjected to dynamic loads the dimension of structure are finite. It is thus rather straight forward to determine dynamic model with finite no of degree of freedom. The corresponding dynamic equation of motions of the discretized structure is then formulated, and highly developed methods for solving them are radially available) In this study nonlinear analysis of retaining wall is studied including soil structure interaction for various type of walls for silty soil, clay soil and sandy soil. The data collected for time history analysis is Koyana,Bhuj, Kobe,Uttrakashi and El Centro. The software used for analysis is ANSYS in which we can model any type of material for soil structure interaction upon this study.

Keywords: Dynamic latch c

Copyright © 2024: R, This is an open access distribution, and reproduction in any medium, provided Access article distributed under the Creative Commons Attribution License the original work is properly cited License, which permits unrestricted use.

Citation: R, "ator", Journal of Science, Computing and Engineering Research, 7(12), December 2024.

I. INTRODUCTION

The determination of seismic earth pressure acting on a retaining wall is a particularly important problem in the design of many geotechnical engineering structures in the seismic zone. For many decades, a number of investigators have developed several methods to estimate the seismic earth pressure on a rigid retaining wall due to earthquake loading. Okabe, Mononobe and Matsuo provided a solution to determine the earth pressure on the basis of limitequilibrium approach, which is an extension of the Coulomb sliding wedge theory. This pseudo-static method is widely known as the Mononobe-Okabe method. Later, this approach, modified by Saran and Gupta, is applicable to cohesive soil backfill. They presented an expression of the total seismic active earth pressure by adding the separately calculated maximum pressure contributions caused by the weight of soil wedge, cohesion of the soil backfill, resulting in different failure planes, which is not compatible with practical situations. Rao and Choudhary the pseudo-static method assumes that the magnitude and phase of acceleration are uniform throughout the backfill, which could not consider the real dynamic nature of earthquake acceleration. In order to remove this deficiency, Steedman analyzed the seismic earth pressure in soil considering composite failure surface following the same approach. All of the mentioned studies applied the pseudostatic method to estimate seismic active force, which considered the seismic loading induced by earthquake to be time-independent.

II. DESIGN EVALUATION

The analysis of a rigid wall with reinforced backfill is carried out by considering the different parameters which are discussed below. Wall geometry: (height of wall and Roadway width) the rigid wall with reinforced backfill technology is suitable particularly for the construction of flyover approach roads and road construction in hilly areas. Hence, height of wall always varying. The width of roadway of 12 m is considered in the present investigation as per IRC: 6 as referred in references. Backfill soil: As reported in the literature, granular soils are preferred for the construction for reinforced earth walls. They have the advantage of free drainage and also because of higher frictional resistance at the interface of soil and reinforcement; there is no slippage of reinforcement. In the present investigation three types of backfill soils having soil modulus 1.00E+04, 5.00E+04, 1.00E+05 (kPa) as reported in literatures as granular soils are selected for investigation. Soil in foundation strata: The soil in foundation strata covers large variations from soft and stiff clay to moderate and compact granular formation. Hence, seven types of soils are considered having soil modulus 1.00E+01 to 1.00E+07 (kPa) as reported in literatures. Steel reinforcement: The reinforcement considered in the analysis is galvanized iron strips of 40 mm wide and cross sectional area of 100 mm² placed at 500 mm vertical spacing. The elastic properties of reinforcement assumed in the analysis are: modulus of elasticity (E) 200 GPa, and Poison's ratio (m) 0.30

Available at https://jscer.org

III. OBJECTIVES

To Study Finite Element Modeling of Retaining Wall Using FEA based software. 2. To Study the behavior of Retaining Wall with variation of Height under various loads. 3. To Validate FEM Model with Approximate Method For Checking Accuracy 4. To Compare Various Design Parameter For Retaining Wall In Accordance with codal provisions

IV. METHODOLOGY

Beside other complex theoretical models and numerical methods, M-O theory is one of the best initial estimates.

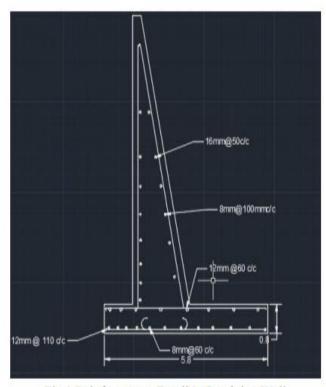
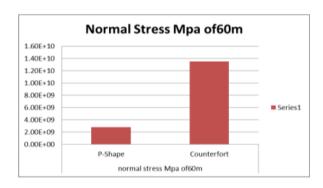


Fig 1 Reinforcement Detail In Retaining Wall

V. PROBLEM STATEMENT


A R.C.C. retaining wall with counter forts is required to support earth to a height of 9 m above the ground level. The top surface of the backfill is horizontal. The trial pit taken at the site indicates that soil of bearing capacity 220 kN/m2 is available at a depth of 1.25 m below the ground level. The weight of earth is 18 kN/m3 and angle of repose is 30°. The coefficient of friction between concrete and soil is 0.58.Use concrete M20 and steel grade Fe 415. Design the retaining wall. Fig 1 Reinforcement Detail In Retaining Wall

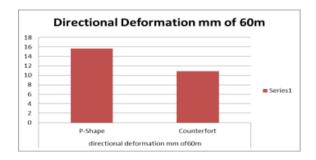
VI. RESULTS AND DISCUSSION

Prepare models of following retaining walls in ANSYS for the different spans • P-shaped Retaining Wall •

Counterfort Retaining Wall A. RETAINING WALL IN ANSYS B. RESULTS FOR RETAINING WALL WITH SPAN 60M

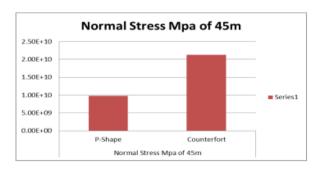
normal stress Mpa of60m	
P-Shape	Counterfort
2.79E+09	1.35E+10

directional deformation mm of60m	
P-Shape	Counterfort
15.664	10.896

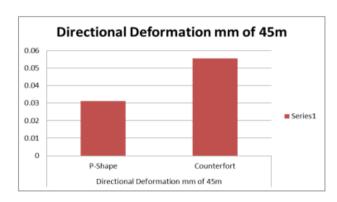

Retaining walls are those structures which are usually constructed to form roads, stabilize trenches and soil slopes, and support unstable structures. Figure 1 shows one of the configurations of retaining schematically. Lateral earth pressure model is belonging to the first group of theories in classical soil mechanics. Coulomb and Rankine proposed their theories to estimate active and passive lateral earth pressures. These kinds of theories propose a coefficient which is a ratio between horizontal and vertical stress behind retaining walls. Using the ratio, lateral pressure is simply calculated by the horizontal stress integration. MononobeOkabe method (M-O), a seismic version of coulomb theory, was proposed based on pseudostatic earthquake loading for granular soils. This method applies earthquake force components using two called seismic horizontal and coefficients vertical coefficients.

The determination of seismic earth pressure acting on a retaining wall is a particularly important problem in the design of many geotechnical engineering structures in the seismic zone. For many decades, a number of investigators have developed several methods to estimate the seismic earth pressure on a rigid retaining wall due to earthquake loading. Okabe, Mononobe and Matsuo provided a solution to determine the earth pressure on the basis of limit-equilibrium approach, which is an extension of the Coulomb sliding wedge theory. This pseudo-static method is widely known as the Mononobe-Okabe method. Later, this

Comparator


Available at https://jscer.org

approach, modified by Saran and Gupta, is applicable to cohesive soil backfill. They presented an expression of the total seismic active earth pressure by adding the separately calculated maximum pressure contributions caused by the weight of soil wedge, cohesion of the soil backfill, resulting in different failure planes, which is not compatible with practical situations. Rao and Choudhary the pseudo-static method assumes that the magnitude and phase of acceleration are uniform throughout the backfill, which could not consider the real dynamic nature of earthquake acceleration. In order to remove this deficiency, Steedman analyzed the seismic earth pressure in soil considering composite failure surface following the same approach. All of the mentioned studies applied the pseudostatic method to estimate seismic active force, which considered the seismic loading induced by earthquake to be time-independen



C. RESULTS FOR RETAINING WALL WITH SPAN

Normal Stress Mpa of 45m	
P-Shape	Counterfort
9.82E+09	2.13E+10

Directional Deformation mm of 45m	
P-Shape	Counterfort
0.03117	0.055595

It has been observed by parametric study that active earth pressure coefficient are almost identical by different methods, it can be noted from the graphical representations of the results obtained from the application of the different theories. • Height of Retaining wall more than 10 m will give sufficient result for the deformation, shear stress, normal stress, strain energy etc value give satisfactory result. • It is observed that counter fort retaining wall has more capacity than P-shaped retaining walls

VII. CONCLUSION

It has been observed by parametric study that active earth pressure coefficient are almost identical by different methods, it can be noted from the graphical representations of the results obtained from the application of the different theories. • Height of Retaining wall more than 10 m will give sufficient result for the deformation, shear stress, normal stress, strain energy etc value give satisfactory result. • It is observed that counter fort retaining wall has more capacity than P-shaped retaining walls.

REFERENCES

- [1]. P. Nirmala, T. Manimegalai, J. R. Arunkumar, S. Vimala, G. Vinoth Rajkumar, Raja Raju, "A Mechanism for Detecting the Intruder in the Network through a Stacking Dilated CNN Model", Wireless Communications and Mobile Computing, vol. 2022, Article ID 1955009, 13 pages, 2022. https://doi.org/10.1155/2022/1955009.
- [2]. D. Sathyanarayanan, T. S. Reddy, A. Sathish, P. Geetha, J. R. Arunkumar and S. P. K. Deepak, "American Sign Language Recognition System for Numerical and Alphabets," 2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE), Chennai, India, 2023, pp. 1-6, doi: 10.1109/RMKMATE59243.2023.10369455.
- [3]. J. R. Arunkumar, Tagele berihun Mengist, 2020" Developing Ethiopian Yirgacheffe Coffee Grading Model using a Deep Learning Classifier" International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-

- 3075, Volume-9 Issue-4, February 2020. DOI: 10.35940/ijitee.D1823.029420.
- [4]. Ashwini, S., Arunkumar, J.R., Prabu, R.T. et al. Diagnosis and multi-classification of lung diseases in CXR images using optimized deep convolutional neural network. Soft Comput (2023). https://doi.org/10.1007/s00500-023-09480-3
- [5]. J.R.Arunkumar, Dr.E.Muthukumar," A Novel Method to Improve AODV Protocol for WSN" in Journal of Engineering Sciences" ISSN NO: 0377-9254Volume 3, Issue 1, Jul 2012.
- [6]. R. K, A. Shameem, P. Biswas, B. T. Geetha, J. R. Arunkumar and P. K. Lakineni, "Supply Chain Management Using Blockchain: Opportunities, Challenges, and Future Directions," 2023 Second International Conference on Informatics (ICI), Noida, India, 2023, pp. 1-6, doi: 10.1109/ICI60088.2023.10421633.
- [7]. Arunkumar, J. R. "Study Analysis of Cloud Security Chanllenges and Issues in Cloud Computing Technologies." Journal of Science, Computing and Engineering Research 6.8 (2023): 06-10.
- [8]. J. R. Arunkumar, R. Raman, S. Sivakumar and R. Pavithra, "Wearable Devices for Patient Monitoring System using IoT," 2023 8th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2023, pp. 381-385, doi: 10.1109/ICCES57224.2023.10192741.
- [9]. S. Sugumaran, C. Geetha, S. S, P. C. Bharath Kumar, T. D. Subha and J. R. Arunkumar, "Energy Efficient Routing Algorithm with Mobile Sink Assistance in Wireless Sensor Networks," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ACCAI58221.2023.10201142.
- [10].R. S. Vignesh, V. Chinnammal, Gururaj.D, A. K. Kumar, K. V. Karthikeyan and J. R. Arunkumar, "Secured Data Access and Control Abilities Management over Cloud Environment using Novel Cryptographic Principles," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ACCAI58221.2023.10199616.
- [11].Syamala, M., Anusuya, R., Sonkar, S.K. et al. Big data analytics for dynamic network slicing in 5G and beyond with dynamic user preferences. Opt Quant Electron 56, 61 (2024). https://doi.org/10.1007/s11082-023-05663-2
- [12].Krishna Veni, S. R., and R. Anusuya. "Design and Study Analysis Automated Recognition system of Fake Currency Notes." Journal of Science, Computing and Engineering Research 6.6 (2023): 16-20.
- [13]. V. RamKumar, S. Shanthi, K. S. Kumar, S. Kanageswari, S. Mahalakshmi and R. Anusuya, "Internet of Things Assisted Remote Health and Safety Monitoring Scheme Using Intelligent Sensors," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ACCAI58221.2023.10199766.
- [14].R. S. Vignesh, R. Sankar, A. Balaji, K. S. Kumar, V. Sharmila Bhargavi and R. Anusuya, "IoT Assisted Drunk and Drive People Identification to Avoid Accidents and Ensure Road Safety Measures," 2023 International Conference on Advances in Computing, Communication and Applied

- Informatics (ACCAI), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ACCAI58221.2023.10200809.
- [15].I. Chandra, G. Sowmiya, G. Charulatha, S. D, S. Gomathi and R. Anusuya, "An efficient Intelligent Systems for Low-Power Consumption Zigbee-Based Wearable Device for Voice Data Transmission," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ICECONF57129.2023.10083856.
- [16] G. Karthikeyan, D. T. G, R. Anusuya, K. K. G, J. T and R. T. Prabu, "Real-Time Sidewalk Crack Identification and Classification based on Convolutional Neural Network using Thermal Images," 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, 2022, pp. 1266-1274, doi: 10.1109/ICACRS55517.2022.10029202.
- [17].R. Meena, T. Kavitha, A. K. S, D. M. Mathew, R. Anusuya and G. Karthik, "Extracting Behavioral Characteristics of College Students Using Data Mining on Big Data," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ICECONF57129.2023.10084276.
- [18] S. Bharathi, A. Balaji, D. Irene. J, C. Kalaivanan and R. Anusuya, "An Efficient Liver Disease Prediction based on Deep Convolutional Neural Network using Biopsy Images," 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2022, pp. 1141-1147, doi: 10.1109/ICOSEC54921.2022.9951870.
- [19] I. Chandra, G. Sowmiya, G. Charulatha, S. D, S. Gomathi and R. Anusuya, "An efficient Intelligent Systems for Low-Power Consumption Zigbee-Based Wearable Device for Voice Data Transmission," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ICECONF57129.2023.10083856.
- [20].Revathi, S., et al. "Developing an Infant Monitoring System using IoT (INMOS)." International Scientific Journal of Contemporary Research in Engineering Science and Management 6.1 (2021): 111-115.
- [21].R. K, A. Shameem, P. Biswas, B. T. Geetha, J. R. Arunkumar and P. K. Lakineni, "Supply Chain Management Using Blockchain: Opportunities, Challenges, and Future Directions," 2023 Second International Conference on Informatics (ICI), Noida, India, 2023, pp. 1-6, doi: 10.1109/ICI60088.2023.10421633.
- [22].J.R.Arunkumar. "Comprehensice Analysis of Security Issues in Cloud Computing Technologies", Journal of Science, Computing and Engineering Research, 6(5), 06-10, June 2023.
- [23].S. Sugumaran, C. Geetha, S. S, P. C. Bharath Kumar, T. D. Subha and J. R. Arunkumar, "Energy Efficient Routing Algorithm with Mobile Sink Assistance in Wireless Sensor Networks," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ACCAI58221.2023.10201142.
- [24].I. Chandra, K. V. Karthikeyan, R. V, S. K, M. Tamilselvi and J. R. Arunkumar, "A Robust and Efficient Computational Offloading and Task Scheduling Model in Mobile Cloud

Comparator

Available at https://jscer.org

- Computing," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ICECONF57129.2023.10084293.
- [25].R. S. Vignesh, A. Kumar S, T. M. Amirthalakshmi, P. Delphy, J. R. Arunkumar and S. Kamatchi, "An Efficient and Intelligent Systems for Internet of Things Based Health Observance System for Covid 19 Patients," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ICECONF57129.2023.10084066.
- [26].DC Jullie Josephine, J Sudhakar, T Helan Vidhya, R Anusuya, G Ramkumar, "An Improved Multi class Breast cancer classification and Abnormality Detection based on Modified Deep Learning Neural Network Principles", Deep Learning in Biomedical Signal and Medical Imaging, CRC Press, Taylor and Francis, 2024.
- [27].R. Anusuya, Pragya Vashishtha, "Real Automatic Number Plate Image Detection With Yolo Algorithms", Journal of Science, Computing and Engineering Research, 7(7), July 2024

