

Page |1

Journal of Science, Computing and Engineering Research (JSCER)

Volume-7, Issue-12, December 2024.

DOI: https://doi.org/10.46379/jscer.2023.071202

Incremental Ontology Extrapolation For Semantic Net

Constructed On Apache Mapreduce Approach
Sampath Shakti, Sharma Sikandar

Assistant Professor, Bannari Amman Institute of Technology, India

Article Information

Received : 10 Dec 2024

Revised : 13 Dec 2024

Accepted : 15 Dec 2024

Published : 17 Dec 2024

Corresponding Author:

 Sampath Shakti, Sharma Sikandar

Abstract— — In the fast growing internet world, web content increase day by day. This

demands the knowledge searching and reasoning in this big data. The knowledge is represented

in the semantic web using web ontology languages. Existing methods take long time to derive

inferences and also it performs full reasoning when new data stream arrives. In this paper an

Incremental Ontology Inference (IOI) Method for handling large number of triples (subject,

predicate, and object) is proposed. In IOI, the triples for each type are collected and a forest like

data structure is built and then performs reasoning. The storage requirement is also reduced by

merging the triple reasoned from other triple into a set of triples with the same values. Hence, it

provides fast traversal of triples in the tree and retrieves the query results efficiently. MapReduce

paradigm is used to implement the proposed approach. The results for user query are reasoned

and retrieved effectively.

Keywords: Big data, Knowledge Searching, MapReduce, Ontology Inference, Semantic Web.

Copyright © 2024: Sampath Shakti, Sharma Sikandar, This is an open access distribution, and reproduction in any medium,

provided Access article distributed under the Creative Commons Attribution License the original work is properly cited License,

which permits unrestricted use.

Citation: Sampath Shakti, Sharma Sikandar, “Incremental Ontology Extrapolation For Semantic Net Constructed On Apache

Mapreduce Approach”, Journal of Science, Computing and Engineering Research, 7(12), December 2024.

I. INTRODUCTION

Currently, the web is the major source of giant data.

Every day the flow of data increases at the web. This makes

the challenge of identifying the useful things from the

available data. The normal human effort is not enough to

infer knowledge from such rich web resource. The Machine

should also be having the knowledge to understand this data

deluge and reason information. Semantic web [1] helps in

making the machines realize the web. The resources on the

web are expressed with the web ontology language, and this

aid computer to identify the essential information from this

current web. The major application of semantic web

includes healthcare and life sciences [2],

machine intelligence [3], and e-marketplace activities

[4]. The statistics [5] shows that the size of the semantic

web is approximately to contain 4.4 billion triples in 2009

and it is currently 20 billion triples. Its development rate is

still increasing. Hence, this creates the problem of

knowledge hunting over such big data. Obtaining inference

from incremental web resource faces three challenges: 1)

Infer knowledge from correct triple is difficult due to its

dispersed data; 2) Increasing Volume of data needs to be

processed in a scalable manner;

 3) Satisfying user query desires high-speed processing.

The fundamental description of information on the web is

the Resource Description Framework (RDF) [6]. It is vital

for the semantic web. Every statement on the web is

symbolized to a triple. It expresses the relationship between

the two resources. For example, Fig. 1 shows one way of

representing the statement, "India is a country" in RDF is as

the triple: "India" is the subject, "rdf:type" is the predicate,

and "Country" is the object.

Fig.1 Representation Of Triple RDF Schema (RDFS)

provides vocabulary for describing how properties and

classes are intended to be used together in RDF data. The

Web Ontology Language (OWL) [7] extends RDF and

RDFS. Its major intention is to bring the expressive and

reasoning power of description logic to the semantic

web.OWL consists of three languages with

increasing expressivity: OWL Lite, OWL DL and OWL

Full. All the three languages allow us to describe classes,

properties, and instances. The weaker languages have

limitations on what can be declared or how it may be

declared. The Inference is derived from this knowledge

represented in the form of triples. Some triples in groups

with others can provide new inference. This is done through

the set of policies. Machines uses this policy set to derive

the inference from the available triples.

II. LITERATURE REVIEW

These days reasoning semantic web have received much

attention from both academic world and the business world.

Lots of reasoning engines have been developed to hold the

reasoning over semantic web. Guo et al., [4] proposed a

Incremental Ontology Extrapolation For Semantic Net Constructed On Apache Mapreduce Approach

Available at https://jscer.org

Page | 2

novel RuleXPM (Rule XML Product Map) method that

infers the next generation electronic marketplace (e-

marketplace) activities. The RuleXPM architecture supports

the concept separation strategy and makes the designed

RuleXPM inference engine generic and suitable for use in

all types of e-marketplace. In this architecture, the inference

engine is modular, i.e., each inference module is

independent and reusable and the data in use can be

dynamically generated, and is contextual. Anagnostopoulos

and Hadjiefthymiades [8],

proposed fuzzy inference engines based on the knowledge-

representation (KR) model to enhance the context inference.

The capability of a context aware system is to classify

context and infer specific situations can be facilitated by

proper KR models. A Fuzzy set based model can

accommodate the vagueness inherent in context capturing.

A fuzzy set is used for representing imprecise context in a

human understandable form. This methodology is generic

and can be applied to different inference schemes in order to

improve the inference capability of the classifier and deal

with mutual exclusion inference.

This model generates specific complementary fuzzy rules

used for increasing the accuracy of the classification

procedure for the well specified information in Semantic

web. Applications can handle context as flexibly as their

users would expect by using this method, but it is not

suitable for all situations of the user. Paulheim and Bizer,

[9] studied the problem of inference with noisy data and

presented the SDType method based on the statistical

distribution of types in RDF datasets to deal with noisy data.

Milea et al., [10] presented a temporal extension of the

OWL for expressing time-dependent information. These

ontology-reasoning methods are conducted on a single

machine or local cluster.

The reasoning speed is directly dependent on the scale of the

ontology, which is not suitable for a large ontology base. To

deal with a large base, some researchers moved to

distributed reasoning methods. Weaver and Hendler, [11]

presented a method for materializing the complete finite

RDFS closure. It is the first method to provide RDFS

inference on such large data sets in such low times and

scalable manner. This maintains soundness and

completeness without requiring any cumbersome

preparation of the data.

This method increases the processing speed by means of

parallel inference. It lacks with scalability and expressivity.

Urbani et al., [12] proposed a scalable distributed reasoning

method by some nontrivial optimisations for encoding the

RDFS ruleset in MapReduce and exploited the MapReduce

framework for efficient large-scale Semantic Web reasoning

and implements on the top of Hadoop. This reasoning

technique performs quick reasoning using Hadoop

Distributed File System (HDFS) and high data correlation.

The drawback of using this method is it does not focus on

quality of reasoning. Schlicht and Stuckenschmidt, [13]

highlighted the drawback of the MapReduce-based

reasoning and then introduced a Mapresolve method for

more expressive logics. It adapts the standard method for

distributed resolution that avoids repetition of resolved

inferences. For the limited expressivity of RDFS, the

repetition can be avoided because every MapReduce job is

executed only once Dean and Ghemawat, [14]. For each

step, the clause sets are parsed and written to disc, generates

needless overhead. Still, these techniques don’t consider the

effect of incremental data volume, and does not show the

processing of users’ queries. To answer the demands on a

user query, they need to obtain the entire RDF closure by

reasoning and save them to hard disk.

 The data volume of RDF closure is ordinarily larger than

original RDF data. The storage of RDF closure is thus not a

small amount and the query on it takes nontrivial time.

Furthermore, as the data volume increases and the ontology

base is updated, these methods require the re-computation of

the entire RDF closure every time when new data arrive. To

avoid such time-consuming process, incremental reasoning

techniques are proposed. Urbani et al., [15] proposed a

scalable parallel inference using MapReduce.

This method calculates the RDF closure for large scale RDF

dataset by adopting algorithms to process the statements

based on input data as incremental reasoning. This technique

identifies the accurate status, which either existing or newer

one does not provide the relationship between the newly

arrived and existing data. Grau et al., presented an

incremental reasoning approach based on modules that can

reuse the information obtained from the previous versions of

ontology [16].

This method is used for OWL reasoning speed is a huge

problem while using this method. Bo Liu et al., proposed an

Incremental and Distributed inference method based on

Mapreduce and Hadoop [17]. This method speeds up the

updating process with newly arrived data and fulfills the

requirements of end users for online queries that leverage

the old and new data to minimize the updating time and

reduce the reasoning time when facing big RDF datasets.

Though this inference method speeds up the updating and

reasoning, it concentrates only on the RDF and does not

consider other web definition languages like OWL.

In this paper, we propose an IOI method that reasons out

from the ontology describing web contents considering the

OWL set operator elements, Inverse element and RDFS

elements. To make the reasoning in the faster way Hadoop

framework [18] can well control over the existing and newly

derived triples. This reduces the inference time issues faced

by large web contents.

Incremental Ontology Extrapolation For Semantic Net Constructed On Apache Mapreduce Approach

Available at https://jscer.org

Page | 3

III. ONTOLOGY INFERENCE BASED ON OWL AND RDF

ELEMENTS

 This section presents the IOI over large scale web contents

described with web ontology description languages include

RDF and OWL. Fig. 2 shows the architectural layout for the

inference, presenting the steps involved in the ontology

reasoning. The input to the IOI method is in the form of

triples. The URLs in the triple are encoded with the

corresponding hash code initially. Then OWL+RDF

reasoning step process the encoded triples and obtain new

reasoned triple incrementally. After that Forest Creation

(FC)/Effective storage (ES) modules are performed to

construct tree based storage of triples. The query processing

step takes the user’s query and answers them with results

obtained after reasoning. A. Hash Coding The web page

contains many statements and they are represented in the

semantic web as the sequence of long URIs to uniquely

identify each web resource. This makes the processing and

reasoning over the URIs complexity. To solve this issue, the

hash code for each URI in the triple is generated. A unique

numeric identifier is assigned to each one of them. Fig. 2

Incremental Ontology Inference Triple file is given as the

input to the MapReduce Program. It splits the triples into

line by line in the map function. Then the reduce function

calculates the hash code for each unique URI emitted from

the map. The steps after calculating the hash code are all

based on only with the encoded triple format obtained from

hash coding to reduce the storage and to speed up the

upcoming inference process. B. Prior Reasoning with OWL

Elements The main inference exists in the triples having the

predicate as property and class. Therefore, before reasoning

out from the RDF elements like

rdfs:subProperty, rdfs:subClassOf, rdfs:domain, and

rdfs:range, we have to reason out of the OWL elements.

Because the triples infers from owl:unionOf,

owl:intersectionOf, and owl:inverseOf can also trigger other

inference of class, domain, and range. Therefore, prior

reasoning with OWL elements is done to make the

reasoning process better. Two reasoning steps consider here

are reasoning from Set Operators and Inverse. OWL

supports set operators like union and intersection elements.

Algorithm 1 shows the reasoning over set operator and

Algorithm 2 shows the reasoning over Inverse element.

Algorithm 1 - Reasoning over Set operator Input: All Triples

T with predicate owl:unionOf and owl:intersectionof { for

each triple t in T if p is owl:unionOf add triple to R if p is

owl:intersectionOf add triple to R return R } Output:

Reasoned rdfs:subClassOf Triples R Algorithm 2 -

Reasoning over Inverse Input: All triples T having predicate

as owl:inverseOf { for each triple t in T if p is owl:inverseOf

for each triple t in T if exists in T add triple to R if exists in

T add triple to R return R } Output: Reasoned rdfs:domain

& rdfs:range triples R The owl:unionOf property relates a

class to a set of class descriptions. The inference exist with

this is, if a class X is the owl:unionOf a set of classes, say A,

B, and C, then each of A, B, and C, is rdfs:subClassOf X.

For example SweetFruit and NonSweetFruit are the unionOf

the Fruit class, then we can infer that both SweetFruit and

NonSweetFruit are the rdfs:subClassOf the class Fruit.

Similar to the owl:unionOf property owl:intersectionOf also

relates a class to a set of class descriptions. The inference

exist with this is, if a class X is the owl:intersectionOf a list

of classes, say A, B, and C, then X is rdfs:subClassOf of

each of A,B, and C. For example, if WhiteWine is exactly

the intersection of the class Wine and the set of things that

are white in color, then we can infer that WhiteWine is an

rdfs:subClassOf Wine. Properties always have a direction,

from domain to range. It is difficult to define relations in

both directions: persons own cars, cars are owned by

persons. The owl:inverseOf construct can be used to define

such an inverse relation between properties. The inference

exist here is, If A is owl:inverseOf B and A domain is U

Then B domain U can be inferred, and similarly if A range

is U Then B range is also U. C. Forest Creation In order to

efficiently handle the inference and avoid the searching over

entire ontology base the forest data structure is maintained.

The forest may consist of one or multiple trees. The tree gets

updated when incremental triples occur. Each node in a tree

stands for a subject or object, and the directed link between

them shows their sub-property relation. FC is further divided

into Property FC (PFC), Class FC (CFC), and

Domain/Range FC (DRFC). PFC is a directed forest

constructed based on all the triples that have predicate

rdfs:subPropertyOf, or have predicate rdf:type and object

rdfs:ContainerMembershipProperty. Fig. 3 shows the PFC

Creation, In this ‘hasSon’ is the rdfs:subPropertyOf

‘hasChild’. So the directed graph from ‘hasSon’ to

‘hasChild’ is drawn. Similarly for all the triples with

predicate rdfs:subPropertyOf(RPO) is drawn

CFC is a directed forest constructed based on all the

triples that have predicate rdfs:subClassOf, or have

predicate rdf:type and object rdfs:Datatype or rdfs:Class.

Each node in a tree stands for a subject or object, and the

directed link between them shows their sub-class relation.

Fig. 4 shows the CFC Creation,

Incremental Ontology Extrapolation For Semantic Net Constructed On Apache Mapreduce Approach

Available at https://jscer.org

Page | 4

 In this ‘Europe’ is the rdfs:subClassOf ‘Country’. So the

directed graph from ‘Europe’ to ‘Country’ is drawn.

Similarly for all the triples with predicate rdfs:subClassOf

(SCO) is drawn. Fig. 4 CFC Creation DRFC is a directed

forest constructed based on the triples that have predicates

rdfs:domain or rdfs:range, in which each node in the tree

stands for a subject or object and the directed link shows the

domain or range relation between the node pair. Fig. 5

shows the DRFC Creation, In this ‘NorthCorner’ has the

rdfs:range as ‘Location’. So the directed graph from

‘NorthCorner’ to ‘Location’ is drawn. To differentiate the

rdfs:domain (R) and rdfs:range (D) is marked with the

dotted line and dark line respectively. Similarly for all the

triples with predicate rdfs:range and rdfs:domain are drawn.

Fig. 5 DRFC Creation D.

 Reasoning over FC The next thing after FC is to perform

reasoning. Since FC contains set of trees, Traversing in the

tree is by two ways, either in the forward or reverse

direction of the tree. If we start from root or endpoint to

search node, then it is called “forward path” otherwise if we

traverse from search node to the root or endpoint then it is

called “reverse path”. Reasoning FC is also done in three

ways similar to the creation process. An Algorithm 3, 4, and

5 shows the Reasoning over PFC, CFC, and DRFC

respectively. The input to the Algorithm is Assertional

Triples (AT). AT is a triple not having the predicate as

subProperty, subClassOf, domain and range. Fig. 6

Reasoning Of PFC Algorithm 3 describes that for the given

AT if its predicate exists in the PFC then new triple be

generated. Fig. 6 shows the example for reasoning

over PFC. Given the triple , the predicate hasSon exist in

the PFC. Therefore, traverse through the forward path of

PFC. The path is hasChild fatherOf  parentOf. Then for

each node in the forward path generate the triple by

replacing the predicate with that node. Thus the final results

are {, , }. Algorithm 3 - Reasoning over PFC Input: All AT

and PFC { for each node p in PFC F<- forward path of p for

each node f in F add triple t to R return R } Output:

Reasoned triple R Algorithm 4 describes that for the given

AT and the DRFC, new triples can be reasoned. For the

given triple, if its predicate is rdfs:domain and object ‘o’

exist in the DRFC then new triple be generated. Similarly, if

its predicate is rdfs:range and subject ‘s’ exists in the DRFC

then new triple be generated. Reasoning over DRFC is done

prior to the CFC since it infers triples that trigger the

reasoning of CFC. Algorithm 4 - Reasoning over DRFC

Input: All AT and DRFC { for each node p in DRFC if p has

a domain edge linked to node c add triple to R if p has a

range edge linked to node c add triple to R return R }

Output: Reasoned triples R that triggers CFC Inference

Algorithm 5 describes that for the given AT if its predicate

is rdf:type and object o exist in the CFC then new triple be

generated. Fig. 7 shows the example for reasoning over

CFC. Given the triple , the object Europe exist in the CFC.

Therefore, traverse through the forward path of CFC. The

forward path is EuropeCountry  Geographic Entity. Then

for each node in the forward path generate the triple by

replacing the object with that node. Thus the final results are

{ , }. Fig.7 Reasoning CFC

Incremental Ontology Extrapolation For Semantic Net Constructed On Apache Mapreduce Approach

Available at https://jscer.org

Page | 5

Algorithm 5 - Reasoning over CFC Input: All AT and CFC

{ for each node o in CFC F <-- forward path of o for each

node f in F add triple t to R return R } Output: Reasoned

rdf:type triples R E. ES Making The AT we obtained from

reasoning can be derived from others, so we can avoid

storing all of them to make the storage efficient. For

example, given two triples AT1: and AT2: and the PFC in

the derived triples for T1 are , , , and , and those for T2 are

and which are all duplicated ones. ES reduce the storage of

AT that can be inferred from others. It is subdivided into

two types according to FC as Property Effective Storage

(PES)

and Class Effective Storage (CES). The information that

cannot be derived is alone stored in ES. PES concentrate on

the AT that is having the same subject and object, but the

predicates are different for each of AT. Similarly CES

concentrate on the AT that is having the same subject and

the predicate should be of rdf:type, but the object field of

AT is different for each of them. Algorithm 6 and 7 are

aimed to build PES and CES respectively. The complexity

of Algorithm 6 and 7 is O(mn) where ‘m’ represents the

number of triples in T and ‘n’ represents the number of

nodes in PFC/CFC. Algorithm 6 - Making PES Input: PFC

and a set of triples that have the same subject and object T =

{, ,. } { T {, ,. . . } P = {P1,P2,..} all the predicates in T

for each Pj in P Q pj in the forward path of PFC for each qi

in Q if qi exists in P Remove qi from P return PES = {Si

,Oi,P} } Output: PES = {𝑆𝑖 ,𝑂𝑖 , } Algorithm 7 - Making

CES Input: CFC and a set of triples that have the same

subject and predicate is rdf:type, T= { , ,… } { T {, ,… }

O= {O1, O2...} all the objects in T for each Oj in O Q Oj

in the forward path of CFC for each 𝐶𝑖 in Q if 𝐶𝑖 exists in O

remove 𝐶𝑖 from O return CES = {𝑠𝑖 ,O} } Output: CES =

{Si,} Fig. 8 Incrementing FC and ES

 F. Updating FC and ES New triples are added to the tree

without reconstructing the full tree. It was done by simply

updating the already existing tree structure. When new

triples arrive, new edges are added to the existing FC. Now

we have two kinds of edges, i.e., existing edges referring to

the triples that exist in the original FC, and incremental ones

to those who’s subject or object or both do not exist in the

FC. Fig. 8 shows the incremental update of FC. Dark lines

shows the already existing edges and dotted edges represent

the incremental edges that are updated. The steps for

updating the FC and ES are as follows. 1. Generate new

PFC by adding new edges to the existing PFC. 2. Generate

incremental PES based on the input triples, add the

incremental PES to the existing PES, and run Algorithm 6 to

generate new PES.

3. Generate incremental DRFC based on the incremental

triples and add incremental DRFC to the existing DRFC. 4.

For the PES the predicate is in the reverse path of the

incremental edges though the forward path of the

incremental edge contains nodes in DRFC, generate the AT

using Algorithm 4. 5. Generate new CFC by adding new

edges to the existing CFC. 6. Generate the incremental CES

based on the incremental AT and the triples generated in

step 4, add the incremental CES to the existing CES, and run

Algorithm 7 to make new CES. G. Query Retrieval The

Incremental Ontology Extrapolation For Semantic Net Constructed On Apache Mapreduce Approach

Available at https://jscer.org

Page | 6

main goal of Calculating FC and ES is to reduce the query

time. In order to search the node in the tree, traversing is

possible in three ways. They are Forward, Backward, and

Reachable node search. Based on these ways there exist six

methods to retrieve the query result. Method 1: Input: pair,

Output: predicate list Search for pair in the PES and obtain

the predicate list Pi. Here i is the count of different predicate

obtained. Check for all the predicate values of i in the PFC

and emit the list of nodes that are available in the forward

path. Method 2: Input: and predicate , Output: object list

Search in the CES and obtain the object list Oi . Here i is the

count of different objects obtained. Check for all the subject

values of i in the CFC and emit the list of nodes that are

available in the forward path. Method 3: Input: , Output:

pair Search for the in the reverse path of the PFC and obtain

the list of nodes Pi in that path. Here i is the count of

different predicate obtained. Check for all predicate values

of i in the PES and emit the pair. Method 4: Input: predicate

and

7) :Execute the query type 2 and filter the result based on

‘s’. 8) :Execute the query type 2 and filter the result with

both ‘s’ and ‘o’. If for all the query type there is no result

obtained means, then return empty to the user. IV.

RESULTS & ANALYSIS To implement the proposed

approach, Hadoop framework is used which enable the

MapReduce technology. We use the Hadoop-2.6.0 and

Hbase0.98.9 for our system. The System is configured with

4 GB memory and 500 GB storage. Hadoop is an open

source Java based implementation which allows the

distributed processing of large scale datasets. The triples for

the experiment are taken from linked open vocabularies

[19]. The geography dataset OWL file is converted to the

triples format. It results into 16776 triples. The main core of

the IOI system is to process these triples and derive

inference from a set of MapReduce programs which are

written by the algorithms described in this paper. The

Hadoop platform supports the HBase [20] for storage of

input and intermediate processing of the triples. To

efficiently compress the input triple elements Hash Coding

is done initially to perform the reasoning. Then prior

reasoning over OWL elements is done to gather the newly

reasoned triples which can be given as input to the next step

of IOI. To construct the FC, the matched triples which can

be given as input to the creation process are collected in the

Map function and it is emitted to the Reduce function. In

Reduce the actual construction process is carried out. Since

programs are split and executed this performance efficiency

is helpful in implementing the FC construction. After

performing the FC and reasoning process, the result of

triples count is 31074. Then ES is computed to reduce the

AT storage that can be inferred from other triples. This

resulted in a set of triples with the same subject and object,

but with different predicate list i.e. {Si,Oi,P} pattern is 1968

and sets of triples with the same subject and a different

object list, i.e.{Si,} pattern is 2106. Thus storage space is

largely reduced. Finally the result of various query type of

user is retrieved from the FC and ES efficiently. This

reduces the query processing time. We compare our

reasoning result with the IDRM [17] implemented by Bo

Liu et al., and analyze the result. The result of analysis in

Table 1 shows that IOI reasons out more number of triples

when compared with IDRM. For IDRM reasons only the

RDF property, class, domain and range elements. But IOI

also infers the three OWL elements such as union,

intersection and inverse which again results in the RDFS

elements like subClassOf, domain and range. These inferred

triples were also considered in constructing the FC and ES.

Hence IOI based reasoning provides better results of nodes

in the CFC and DRFC. This helps in answering the user

query with more reasoning ability of IOI. Table1.

Comparison Result

CONCLUSION

Incremental Ontology Extrapolation For Semantic Net Constructed On Apache Mapreduce Approach

Available at https://jscer.org

Page | 7

In this paper, reasoning over the semantic data is performed.

Large volume of data makes the reasoning process a

challenging one. To avoid the complexity of reasoning, IOI

method is proposed. The experiment is conducted using

both IOI and IDRM [17]. The results show that IOI infers

more number of triples than other reasoning methods

comparatively because it infers the set and inverse elements

also. In future, the method can be enhanced with more

properties of OWL other than that considered here. Also the

efficiency of the results obtained by the user query can be

further improved.

REFERENCES

[1]. P. Nirmala, T. Manimegalai, J. R. Arunkumar, S. Vimala, G.

Vinoth Rajkumar, Raja Raju, "A Mechanism for Detecting the

Intruder in the Network through a Stacking Dilated CNN

Model", Wireless Communications and Mobile Computing,

vol. 2022, Article ID 1955009, 13 pages, 2022.

https://doi.org/10.1155/2022/1955009.

[2]. D. Sathyanarayanan, T. S. Reddy, A. Sathish, P. Geetha, J. R.

Arunkumar and S. P. K. Deepak, "American Sign Language

Recognition System for Numerical and Alphabets," 2023

International Conference on Research Methodologies in

Knowledge Management, Artificial Intelligence and

Telecommunication Engineering (RMKMATE), Chennai,

India, 2023, pp. 1-6, doi:

10.1109/RMKMATE59243.2023.10369455.

[3]. J. R. Arunkumar, Tagele berihun Mengist, 2020” Developing

Ethiopian Yirgacheffe Coffee Grading Model using a Deep

Learning Classifier” International Journal of Innovative

Technology and Exploring Engineering (IJITEE) ISSN: 2278-

3075, Volume-9 Issue-4, February 2020. DOI:

10.35940/ijitee.D1823.029420.

[4]. Ashwini, S., Arunkumar, J.R., Prabu, R.T. et al. Diagnosis

and multi-classification of lung diseases in CXR images using

optimized deep convolutional neural network. Soft

Comput (2023). https://doi.org/10.1007/s00500-023-

09480-3

[5]. J.R.Arunkumar, Dr.E.Muthukumar,” A Novel Method to

Improve AODV Protocol for WSN” in Journal of Engineering

Sciences” ISSN NO: 0377-9254Volume 3, Issue 1, Jul 2012.

[6]. R. K, A. Shameem, P. Biswas, B. T. Geetha, J. R. Arunkumar

and P. K. Lakineni, "Supply Chain Management Using

Blockchain: Opportunities, Challenges, and Future

Directions," 2023 Second International Conference on

Informatics (ICI), Noida, India, 2023, pp. 1-6, doi:

10.1109/ICI60088.2023.10421633.

[7]. Arunkumar, J. R. "Study Analysis of Cloud Security

Chanllenges and Issues in Cloud Computing

Technologies." Journal of Science, Computing and

Engineering Research 6.8 (2023): 06-10.

[8]. J. R. Arunkumar, R. Raman, S. Sivakumar and R. Pavithra,

"Wearable Devices for Patient Monitoring System using

IoT," 2023 8th International Conference on Communication

and Electronics Systems (ICCES), Coimbatore, India, 2023,

pp. 381-385, doi: 10.1109/ICCES57224.2023.10192741.

[9]. S. Sugumaran, C. Geetha, S. S, P. C. Bharath Kumar, T. D.

Subha and J. R. Arunkumar, "Energy Efficient Routing

Algorithm with Mobile Sink Assistance in Wireless Sensor

Networks," 2023 International Conference on Advances in

Computing, Communication and Applied Informatics

(ACCAI), Chennai, India, 2023, pp. 1-7, doi:

10.1109/ACCAI58221.2023.10201142.

[10]. R. S. Vignesh, V. Chinnammal, Gururaj.D, A. K. Kumar, K.

V. Karthikeyan and J. R. Arunkumar, "Secured Data Access

and Control Abilities Management over Cloud Environment

using Novel Cryptographic Principles," 2023 International

Conference on Advances in Computing, Communication and

Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-8,

doi: 10.1109/ACCAI58221.2023.10199616.

[11]. Syamala, M., Anusuya, R., Sonkar, S.K. et al. Big data

analytics for dynamic network slicing in 5G and beyond with

dynamic user preferences. Opt Quant Electron 56, 61 (2024).

https://doi.org/10.1007/s11082-023-05663-2

[12]. Krishna Veni, S. R., and R. Anusuya. "Design and Study

Analysis Automated Recognition system of Fake Currency

Notes." Journal of Science, Computing and Engineering

Research 6.6 (2023): 16-20.

[13]. V. RamKumar, S. Shanthi, K. S. Kumar, S. Kanageswari, S.

Mahalakshmi and R. Anusuya, "Internet of Things Assisted

Remote Health and Safety Monitoring Scheme Using

Intelligent Sensors," 2023 International Conference on

Advances in Computing, Communication and Applied

Informatics (ACCAI), Chennai, India, 2023, pp. 1-8, doi:

10.1109/ACCAI58221.2023.10199766.

[14]. R. S. Vignesh, R. Sankar, A. Balaji, K. S. Kumar, V. Sharmila

Bhargavi and R. Anusuya, "IoT Assisted Drunk and Drive

People Identification to Avoid Accidents and Ensure Road

Safety Measures," 2023 International Conference on

Advances in Computing, Communication and Applied

Informatics (ACCAI), Chennai, India, 2023, pp. 1-7, doi:

10.1109/ACCAI58221.2023.10200809.

[15]. I. Chandra, G. Sowmiya, G. Charulatha, S. D, S. Gomathi and

R. Anusuya, "An efficient Intelligent Systems for Low-Power

Consumption Zigbee-Based Wearable Device for Voice Data

Transmission," 2023 International Conference on Artificial

Intelligence and Knowledge Discovery in Concurrent

Engineering (ICECONF), Chennai, India, 2023, pp. 1-7, doi:

10.1109/ICECONF57129.2023.10083856.

[16]. G. Karthikeyan, D. T. G, R. Anusuya, K. K. G, J. T and R. T.

Prabu, "Real-Time Sidewalk Crack Identification and

Classification based on Convolutional Neural Network using

Thermal Images," 2022 International Conference on

Automation, Computing and Renewable Systems (ICACRS),

Pudukkottai, India, 2022, pp. 1266-1274, doi:

10.1109/ICACRS55517.2022.10029202.

[17]. R. Meena, T. Kavitha, A. K. S, D. M. Mathew, R. Anusuya

and G. Karthik, "Extracting Behavioral Characteristics of

College Students Using Data Mining on Big Data," 2023

International Conference on Artificial Intelligence and

Knowledge Discovery in Concurrent Engineering

(ICECONF), Chennai, India, 2023, pp. 1-7, doi:

10.1109/ICECONF57129.2023.10084276.

[18]. S. Bharathi, A. Balaji, D. Irene. J, C. Kalaivanan and R.

Anusuya, "An Efficient Liver Disease Prediction based on

Deep Convolutional Neural Network using Biopsy

Images," 2022 3rd International Conference on Smart

Electronics and Communication (ICOSEC), Trichy, India,

https://doi.org/10.1007/s00500-023-09480-3
https://doi.org/10.1007/s00500-023-09480-3
https://doi.org/10.1007/s11082-023-05663-2

Incremental Ontology Extrapolation For Semantic Net Constructed On Apache Mapreduce Approach

Available at https://jscer.org

Page | 8

2022, pp. 1141-1147, doi:

10.1109/ICOSEC54921.2022.9951870.

[19]. I. Chandra, G. Sowmiya, G. Charulatha, S. D, S. Gomathi and

R. Anusuya, "An efficient Intelligent Systems for Low-Power

Consumption Zigbee-Based Wearable Device for Voice Data

Transmission," 2023 International Conference on Artificial

Intelligence and Knowledge Discovery in Concurrent

Engineering (ICECONF), Chennai, India, 2023, pp. 1-7, doi:

10.1109/ICECONF57129.2023.10083856.

[20]. Revathi, S., et al. "Developing an Infant Monitoring System

using IoT (INMOS)." International Scientific Journal of

Contemporary Research in Engineering Science and

Management 6.1 (2021): 111-115.

[21]. R. K, A. Shameem, P. Biswas, B. T. Geetha, J. R. Arunkumar

and P. K. Lakineni, "Supply Chain Management Using

Blockchain: Opportunities, Challenges, and Future

Directions," 2023 Second International Conference on

Informatics (ICI), Noida, India, 2023, pp. 1-6, doi:

10.1109/ICI60088.2023.10421633.

[22]. J.R.Arunkumar. “Comprehensice Analysis of Security Issues

in Cloud Computing Technologies”, Journal of

Science,Computing and Engineering Research, 6(5), 06-10,

June 2023.

[23]. S. Sugumaran, C. Geetha, S. S, P. C. Bharath Kumar, T. D.

Subha and J. R. Arunkumar, "Energy Efficient Routing

Algorithm with Mobile Sink Assistance in Wireless Sensor

Networks," 2023 International Conference on Advances in

Computing, Communication and Applied Informatics

(ACCAI), Chennai, India, 2023, pp. 1-7, doi:

10.1109/ACCAI58221.2023.10201142.

[24]. I. Chandra, K. V. Karthikeyan, R. V, S. K, M. Tamilselvi and

J. R. Arunkumar, "A Robust and Efficient Computational

Offloading and Task Scheduling Model in Mobile Cloud

Computing," 2023 International Conference on Artificial

Intelligence and Knowledge Discovery in Concurrent

Engineering (ICECONF), Chennai, India, 2023, pp. 1-8, doi:

10.1109/ICECONF57129.2023.10084293.

[25]. R. S. Vignesh, A. Kumar S, T. M. Amirthalakshmi, P.

Delphy, J. R. Arunkumar and S. Kamatchi, "An Efficient and

Intelligent Systems for Internet of Things Based Health

Observance System for Covid 19 Patients," 2023 International

Conference on Artificial Intelligence and Knowledge

Discovery in Concurrent Engineering (ICECONF), Chennai,

India, 2023, pp. 1-8, doi:

10.1109/ICECONF57129.2023.10084066.

[26]. DC Jullie Josephine, J Sudhakar, T Helan Vidhya, R

Anusuya, G Ramkumar,“An Improved Multi class Breast

cancer classification and Abnormality Detection based on

Modified Deep Learning Neural Network Principles”, Deep

Learning in Biomedical Signal and Medical Imaging, CRC

Press, Taylor and Francis, 2024.

[27]. R. Anusuya, Pragya Vashishtha, “Real Automatic Number

Plate Image Detection With Yolo Algorithms”, Journal of

Science, Computing and Engineering Research, 7(7), July

2024.

