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Abstract— — In the fast growing internet world, web content increase day by day. This 

demands the knowledge searching and reasoning in this big data. The knowledge is represented 

in the semantic web using web ontology languages. Existing methods take long time to derive 

inferences and also it performs full reasoning when new data stream arrives. In this paper an 

Incremental Ontology Inference (IOI) Method for handling large number of triples (subject, 

predicate, and object) is proposed. In IOI, the triples for each type are collected and a forest like 

data structure is built and then performs reasoning. The storage requirement is also reduced by 

merging the triple reasoned from other triple into a set of triples with the same values. Hence, it 

provides fast traversal of triples in the tree and retrieves the query results efficiently. MapReduce 

paradigm is used to implement the proposed approach. The results for user query are reasoned 

and retrieved effectively. 
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I. INTRODUCTION 

Currently, the web is the major source of giant data. 

Every day the flow of data increases at the web. This makes 

the challenge of identifying the useful things from the 

available data. The normal human effort is not enough to 

infer knowledge from such rich web resource. The Machine 

should also be having the knowledge to understand this data 

deluge and reason information. Semantic web [1] helps in 

making the machines realize the web. The resources on the 

web are expressed with the web ontology language, and this 

aid computer to identify the essential information from this 

current web. The major application of semantic web 

includes healthcare and life sciences [2],  

machine intelligence [3], and e-marketplace activities 

[4]. The statistics [5] shows that the size of the semantic 

web is approximately to contain 4.4 billion triples in 2009 

and it is currently 20 billion triples. Its development rate is 

still increasing. Hence, this creates the problem of 

knowledge hunting over such big data. Obtaining inference 

from incremental web resource faces three challenges: 1) 

Infer knowledge from correct triple is difficult due to its 

dispersed data; 2) Increasing Volume of data needs to be 

processed in a scalable manner; 

 3) Satisfying user query desires high-speed processing. 

The fundamental description of information on the web is 

the Resource Description Framework (RDF) [6]. It is vital 

for the semantic web. Every statement on the web is 

symbolized to a triple. It expresses the relationship between 

the two resources. For example, Fig. 1 shows one way of 

representing the statement, "India is a country" in RDF is as 

the triple: "India" is the subject, "rdf:type" is the predicate, 

and "Country" is the object.  

Fig.1 Representation Of Triple RDF Schema (RDFS) 

provides vocabulary for describing how properties and 

classes are intended to be used together in RDF data. The 

Web Ontology Language (OWL) [7] extends RDF and 

RDFS. Its major intention is to bring the expressive and 

reasoning power of description logic to the semantic 

web.OWL consists of three languages with  

increasing expressivity: OWL Lite, OWL DL and OWL 

Full. All the three languages allow us to describe classes, 

properties, and instances. The weaker languages have 

limitations on what can be declared or how it may be 

declared. The Inference is derived from this knowledge 

represented in the form of triples. Some triples in groups 

with others can provide new inference. This is done through 

the set of policies. Machines uses this policy set to derive 

the inference from the available triples.  

II. LITERATURE REVIEW  

These days reasoning semantic web have received much 

attention from both academic world and the business world. 

Lots of reasoning engines have been developed to hold the 

reasoning over semantic web. Guo et al., [4] proposed a 
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novel RuleXPM (Rule XML Product Map) method that 

infers the next generation electronic marketplace (e-

marketplace) activities. The RuleXPM architecture supports 

the concept separation strategy and makes the designed 

RuleXPM inference engine generic and suitable for use in 

all types of e-marketplace. In this architecture, the inference 

engine is modular, i.e., each inference module is 

independent and reusable and the data in use can be 

dynamically generated, and is contextual. Anagnostopoulos 

and Hadjiefthymiades [8],  

proposed fuzzy inference engines based on the knowledge-

representation (KR) model to enhance the context inference. 

The capability of a context aware system is to classify 

context and infer specific situations can be facilitated by 

proper KR models. A Fuzzy set based model can 

accommodate the vagueness inherent in context capturing. 

A fuzzy set is used for representing imprecise context in a 

human understandable form. This methodology is generic 

and can be applied to different inference schemes in order to 

improve the inference capability of the classifier and deal 

with mutual exclusion inference.  

This model generates specific complementary fuzzy rules 

used for increasing the accuracy of the classification 

procedure for the well specified information in Semantic 

web. Applications can handle context as flexibly as their 

users would expect by using this method, but it is not 

suitable for all situations of the user. Paulheim and Bizer, 

[9] studied the problem of inference with noisy data and 

presented the SDType method based on the statistical 

distribution of types in RDF datasets to deal with noisy data. 

Milea et al., [10] presented a temporal extension of the 

OWL for expressing time-dependent information. These 

ontology-reasoning methods are conducted on a single 

machine or local cluster.  

The reasoning speed is directly dependent on the scale of the 

ontology, which is not suitable for a large ontology base. To 

deal with a large base, some researchers moved to 

distributed reasoning methods. Weaver and Hendler, [11] 

presented a method for materializing the complete finite 

RDFS closure. It is the first method to provide RDFS 

inference on such large data sets in such low times and 

scalable manner. This maintains soundness and 

completeness without requiring any cumbersome 

preparation of the data.  

This method increases the processing speed by means of 

parallel inference. It lacks with scalability and expressivity. 

Urbani et al., [12] proposed a scalable distributed reasoning 

method by some nontrivial optimisations for encoding the 

RDFS ruleset in MapReduce and exploited the MapReduce 

framework for efficient large-scale Semantic Web reasoning 

and implements on the top of Hadoop. This reasoning 

technique performs quick reasoning using Hadoop 

Distributed File System (HDFS) and high data correlation. 

The drawback of using this method is it does not focus on 

quality of reasoning. Schlicht and Stuckenschmidt, [13] 

highlighted the drawback of the MapReduce-based 

reasoning and then introduced a Mapresolve method for 

more expressive logics. It adapts the standard method for 

distributed resolution that avoids repetition of resolved 

inferences. For the limited expressivity of RDFS, the 

repetition can be avoided because every MapReduce job is 

executed only once Dean and Ghemawat, [14]. For each 

step, the clause sets are parsed and written to disc, generates 

needless overhead. Still, these techniques don’t consider the 

effect of incremental data volume, and does not show the 

processing of users’ queries. To answer the demands on a 

user query, they need to obtain the entire RDF closure by 

reasoning and save them to hard disk. 

 The data volume of RDF closure is ordinarily larger than 

original RDF data. The storage of RDF closure is thus not a 

small amount and the query on it takes nontrivial time. 

Furthermore, as the data volume increases and the ontology 

base is updated, these methods require the re-computation of 

the entire RDF closure every time when new data arrive. To 

avoid such time-consuming process, incremental reasoning 

techniques are proposed. Urbani et al., [15] proposed a 

scalable parallel inference using MapReduce.  

This method calculates the RDF closure for large scale RDF 

dataset by adopting algorithms to process the statements 

based on input data as incremental reasoning. This technique 

identifies the accurate status, which either existing or newer 

one does not provide the relationship between the newly 

arrived and existing data. Grau et al., presented an 

incremental reasoning approach based on modules that can 

reuse the information obtained from the previous versions of 

ontology [16].  

This method is used for OWL reasoning speed is a huge 

problem while using this method. Bo Liu et al., proposed an 

Incremental and Distributed inference method based on 

Mapreduce and Hadoop [17]. This method speeds up the 

updating process with newly arrived data and fulfills the 

requirements of end users for online queries that leverage 

the old and new data to minimize the updating time and 

reduce the reasoning time when facing big RDF datasets. 

Though this inference method speeds up the updating and 

reasoning, it concentrates only on the RDF and does not 

consider other web definition languages like OWL.  

In this paper, we propose an IOI method that reasons out 

from the ontology describing web contents considering the 

OWL set operator elements, Inverse element and RDFS 

elements. To make the reasoning in the faster way Hadoop 

framework [18] can well control over the existing and newly 

derived triples. This reduces the inference time issues faced 

by large web contents.  
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III.  ONTOLOGY INFERENCE BASED ON OWL AND RDF 

ELEMENTS 

 This section presents the IOI over large scale web contents 

described with web ontology description languages include 

RDF and OWL. Fig. 2 shows the architectural layout for the 

inference, presenting the steps involved in the ontology 

reasoning. The input to the IOI method is in the form of 

triples. The URLs in the triple are encoded with the 

corresponding hash code initially. Then OWL+RDF 

reasoning step process the encoded triples and obtain new 

reasoned triple incrementally. After that Forest Creation 

(FC)/Effective storage (ES) modules are performed to 

construct tree based storage of triples. The query processing 

step takes the user’s query and answers them with results 

obtained after reasoning. A. Hash Coding The web page 

contains many statements and they are represented in the 

semantic web as the sequence of long URIs to uniquely 

identify each web resource. This makes the processing and 

reasoning over the URIs complexity. To solve this issue, the 

hash code for each URI in the triple is generated. A unique 

numeric identifier is assigned to each one of them. Fig. 2 

Incremental Ontology Inference Triple file is given as the 

input to the MapReduce Program. It splits the triples into 

line by line in the map function. Then the reduce function 

calculates the hash code for each unique URI emitted from 

the map. The steps after calculating the hash code are all 

based on only with the encoded triple format obtained from 

hash coding to reduce the storage and to speed up the 

upcoming inference process. B. Prior Reasoning with OWL 

Elements The main inference exists in the triples having the 

predicate as property and class. Therefore, before reasoning 

out from the RDF elements like 

rdfs:subProperty, rdfs:subClassOf, rdfs:domain, and 

rdfs:range, we have to reason out of the OWL elements. 

Because the triples infers from owl:unionOf, 

owl:intersectionOf, and owl:inverseOf can also trigger other 

inference of class, domain, and range. Therefore, prior 

reasoning with OWL elements is done to make the 

reasoning process better. Two reasoning steps consider here 

are reasoning from Set Operators and Inverse. OWL 

supports set operators like union and intersection elements. 

Algorithm 1 shows the reasoning over set operator and 

Algorithm 2 shows the reasoning over Inverse element. 

Algorithm 1 - Reasoning over Set operator Input: All Triples 

T with predicate owl:unionOf and owl:intersectionof { for 

each triple t in T if p is owl:unionOf add triple to R if p is 

owl:intersectionOf add triple to R return R } Output: 

Reasoned rdfs:subClassOf Triples R Algorithm 2 - 

Reasoning over Inverse Input: All triples T having predicate 

as owl:inverseOf { for each triple t in T if p is owl:inverseOf 

for each triple t in T if exists in T add triple to R if exists in 

T add triple to R return R } Output: Reasoned rdfs:domain 

& rdfs:range triples R The owl:unionOf property relates a 

class to a set of class descriptions. The inference exist with 

this is, if a class X is the owl:unionOf a set of classes, say A, 

B, and C, then each of A, B, and C, is rdfs:subClassOf X. 

For example SweetFruit and NonSweetFruit are the unionOf 

the Fruit class, then we can infer that both SweetFruit and 

NonSweetFruit are the rdfs:subClassOf the class Fruit. 

Similar to the owl:unionOf property owl:intersectionOf also 

relates a class to a set of class descriptions. The inference 

exist with this is, if a class X is the owl:intersectionOf a list 

of classes, say A, B, and C, then X is rdfs:subClassOf of 

each of A,B, and C. For example, if WhiteWine is exactly 

the intersection of the class Wine and the set of things that 

are white in color, then we can infer that WhiteWine is an 

rdfs:subClassOf Wine. Properties always have a direction, 

from domain to range. It is difficult to define relations in 

both directions: persons own cars, cars are owned by 

persons. The owl:inverseOf construct can be used to define 

such an inverse relation between properties. The inference 

exist here is, If A is owl:inverseOf B and A domain is U 

Then B domain U can be inferred, and similarly if A range 

is U Then B range is also U. C. Forest Creation In order to 

efficiently handle the inference and avoid the searching over 

entire ontology base the forest data structure is maintained. 

The forest may consist of one or multiple trees. The tree gets 

updated when incremental triples occur. Each node in a tree 

stands for a subject or object, and the directed link between 

them shows their sub-property relation. FC is further divided 

into Property FC (PFC), Class FC (CFC), and 

Domain/Range FC (DRFC). PFC is a directed forest 

constructed based on all the triples that have predicate 

rdfs:subPropertyOf, or have predicate rdf:type and object 

rdfs:ContainerMembershipProperty. Fig. 3 shows the PFC 

Creation, In this ‘hasSon’ is the rdfs:subPropertyOf 

‘hasChild’. So the directed graph from ‘hasSon’ to 

‘hasChild’ is drawn. Similarly for all the triples with 

predicate rdfs:subPropertyOf(RPO) is drawn 

CFC is a directed forest constructed based on all the 

triples that have predicate rdfs:subClassOf, or have 

predicate rdf:type and object rdfs:Datatype or rdfs:Class. 

Each node in a tree stands for a subject or object, and the 

directed link between them shows their sub-class relation. 

Fig. 4 shows the CFC Creation, 
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 In this ‘Europe’ is the rdfs:subClassOf ‘Country’. So the 

directed graph from ‘Europe’ to ‘Country’ is drawn. 

Similarly for all the triples with predicate rdfs:subClassOf 

(SCO) is drawn. Fig. 4 CFC Creation DRFC is a directed 

forest constructed based on the triples that have predicates 

rdfs:domain or rdfs:range, in which each node in the tree 

stands for a subject or object and the directed link shows the 

domain or range relation between the node pair. Fig. 5 

shows the DRFC Creation, In this ‘NorthCorner’ has the 

rdfs:range as ‘Location’. So the directed graph from 

‘NorthCorner’ to ‘Location’ is drawn. To differentiate the 

rdfs:domain (R) and rdfs:range (D) is marked with the 

dotted line and dark line respectively. Similarly for all the 

triples with predicate rdfs:range and rdfs:domain are drawn. 

Fig. 5 DRFC Creation D. 

 Reasoning over FC The next thing after FC is to perform 

reasoning. Since FC contains set of trees, Traversing in the 

tree is by two ways, either in the forward or reverse 

direction of the tree. If we start from root or endpoint to 

search node, then it is called “forward path” otherwise if we 

traverse from search node to the root or endpoint then it is 

called “reverse path”. Reasoning FC is also done in three 

ways similar to the creation process. An Algorithm 3, 4, and 

5 shows the Reasoning over PFC, CFC, and DRFC 

respectively. The input to the Algorithm is Assertional 

Triples (AT). AT is a triple not having the predicate as 

subProperty, subClassOf, domain and range. Fig. 6 

Reasoning Of PFC Algorithm 3 describes that for the given 

AT if its predicate exists in the PFC then new triple be 

generated. Fig. 6 shows the example for reasoning 

over PFC. Given the triple , the predicate hasSon exist in 

the PFC. Therefore, traverse through the forward path of 

PFC. The path is hasChild fatherOf  parentOf. Then for 

each node in the forward path generate the triple by 

replacing the predicate with that node. Thus the final results 

are {, , }. Algorithm 3 - Reasoning over PFC Input: All AT 

and PFC { for each node p in PFC F<- forward path of p for 

each node f in F add triple t to R return R } Output: 

Reasoned triple R Algorithm 4 describes that for the given 

AT and the DRFC, new triples can be reasoned. For the 

given triple, if its predicate is rdfs:domain and object ‘o’ 

exist in the DRFC then new triple be generated. Similarly, if 

its predicate is rdfs:range and subject ‘s’ exists in the DRFC 

then new triple be generated. Reasoning over DRFC is done 

prior to the CFC since it infers triples that trigger the 

reasoning of CFC. Algorithm 4 - Reasoning over DRFC 

Input: All AT and DRFC { for each node p in DRFC if p has 

a domain edge linked to node c add triple to R if p has a 

range edge linked to node c add triple to R return R } 

Output: Reasoned triples R that triggers CFC Inference 

Algorithm 5 describes that for the given AT if its predicate 

is rdf:type and object o exist in the CFC then new triple be 

generated. Fig. 7 shows the example for reasoning over 

CFC. Given the triple , the object Europe exist in the CFC. 

Therefore, traverse through the forward path of CFC. The 

forward path is EuropeCountry  Geographic Entity. Then 

for each node in the forward path generate the triple by 

replacing the object with that node. Thus the final results are 

{ , }. Fig.7 Reasoning CFC  
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Algorithm 5 - Reasoning over CFC Input: All AT and CFC 

{ for each node o in CFC F <-- forward path of o for each 

node f in F add triple t to R return R } Output: Reasoned 

rdf:type triples R E. ES Making The AT we obtained from 

reasoning can be derived from others, so we can avoid 

storing all of them to make the storage efficient. For 

example, given two triples AT1: and AT2: and the PFC in 

the derived triples for T1 are , , , and , and those for T2 are 

and which are all duplicated ones. ES reduce the storage of 

AT that can be inferred from others. It is subdivided into 

two types according to FC as Property Effective Storage 

(PES) 

and Class Effective Storage (CES). The information that 

cannot be derived is alone stored in ES. PES concentrate on 

the AT that is having the same subject and object, but the 

predicates are different for each of AT. Similarly CES 

concentrate on the AT that is having the same subject and 

the predicate should be of rdf:type, but the object field of 

AT is different for each of them. Algorithm 6 and 7 are 

aimed to build PES and CES respectively. The complexity 

of Algorithm 6 and 7 is O(mn) where ‘m’ represents the 

number of triples in T and ‘n’ represents the number of 

nodes in PFC/CFC. Algorithm 6 - Making PES Input: PFC 

and a set of triples that have the same subject and object T = 

{, ,. } { T {, ,. . . } P = {P1,P2,..} all the predicates in T 

for each Pj in P Q pj in the forward path of PFC for each qi 

in Q if qi exists in P Remove qi from P return PES = {Si 

,Oi,P} } Output: PES = {𝑆𝑖 ,𝑂𝑖 , } Algorithm 7 - Making 

CES Input: CFC and a set of triples that have the same 

subject and predicate is rdf:type, T= { , ,… } { T {, ,… } 

O= {O1, O2...} all the objects in T for each Oj in O Q Oj 

in the forward path of CFC for each 𝐶𝑖 in Q if 𝐶𝑖 exists in O 

remove 𝐶𝑖 from O return CES = {𝑠𝑖 ,O} } Output: CES = 

{Si,} Fig. 8 Incrementing FC and ES 

 F. Updating FC and ES New triples are added to the tree 

without reconstructing the full tree. It was done by simply 

updating the already existing tree structure. When new 

triples arrive, new edges are added to the existing FC. Now 

we have two kinds of edges, i.e., existing edges referring to 

the triples that exist in the original FC, and incremental ones 

to those who’s subject or object or both do not exist in the 

FC. Fig. 8 shows the incremental update of FC. Dark lines 

shows the already existing edges and dotted edges represent 

the incremental edges that are updated. The steps for 

updating the FC and ES are as follows. 1. Generate new 

PFC by adding new edges to the existing PFC. 2. Generate 

incremental PES based on the input triples, add the 

incremental PES to the existing PES, and run Algorithm 6 to 

generate new PES. 

3. Generate incremental DRFC based on the incremental 

triples and add incremental DRFC to the existing DRFC. 4. 

For the PES the predicate is in the reverse path of the 

incremental edges though the forward path of the 

incremental edge contains nodes in DRFC, generate the AT 

using Algorithm 4. 5. Generate new CFC by adding new 

edges to the existing CFC. 6. Generate the incremental CES 

based on the incremental AT and the triples generated in 

step 4, add the incremental CES to the existing CES, and run 

Algorithm 7 to make new CES. G. Query Retrieval The 
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main goal of Calculating FC and ES is to reduce the query 

time. In order to search the node in the tree, traversing is 

possible in three ways. They are Forward, Backward, and 

Reachable node search. Based on these ways there exist six 

methods to retrieve the query result. Method 1: Input: pair, 

Output: predicate list Search for pair in the PES and obtain 

the predicate list Pi. Here i is the count of different predicate 

obtained. Check for all the predicate values of i in the PFC 

and emit the list of nodes that are available in the forward 

path. Method 2: Input: and predicate , Output: object list 

Search in the CES and obtain the object list Oi . Here i is the 

count of different objects obtained. Check for all the subject 

values of i in the CFC and emit the list of nodes that are 

available in the forward path. Method 3: Input: , Output: 

pair Search for the in the reverse path of the PFC and obtain 

the list of nodes Pi in that path. Here i is the count of 

different predicate obtained. Check for all predicate values 

of i in the PES and emit the pair. Method 4: Input: predicate 

and 

7) :Execute the query type 2 and filter the result based on 

‘s’. 8) :Execute the query type 2 and filter the result with 

both ‘s’ and ‘o’. If for all the query type there is no result 

obtained means, then return empty to the user. IV. 

RESULTS & ANALYSIS To implement the proposed 

approach, Hadoop framework is used which enable the 

MapReduce technology. We use the Hadoop-2.6.0 and 

Hbase0.98.9 for our system. The System is configured with 

4 GB memory and 500 GB storage. Hadoop is an open 

source Java based implementation which allows the 

distributed processing of large scale datasets. The triples for 

the experiment are taken from linked open vocabularies 

[19]. The geography dataset OWL file is converted to the 

triples format. It results into 16776 triples. The main core of 

the IOI system is to process these triples and derive 

inference from a set of MapReduce programs which are 

written by the algorithms described in this paper. The 

Hadoop platform supports the HBase [20] for storage of 

input and intermediate processing of the triples. To 

efficiently compress the input triple elements Hash Coding 

is done initially to perform the reasoning. Then prior 

reasoning over OWL elements is done to gather the newly 

reasoned triples which can be given as input to the next step 

of IOI. To construct the FC, the matched triples which can 

be given as input to the creation process are collected in the 

Map function and it is emitted to the Reduce function. In 

Reduce the actual construction process is carried out. Since 

programs are split and executed this performance efficiency 

is helpful in implementing the FC construction. After 

performing the FC and reasoning process, the result of 

triples count is 31074. Then ES is computed to reduce the 

AT storage that can be inferred from other triples. This 

resulted in a set of triples with the same subject and object, 

but with different predicate list i.e. {Si,Oi,P} pattern is 1968 

and sets of triples with the same subject and a different 

object list, i.e.{Si,} pattern is 2106. Thus storage space is 

largely reduced. Finally the result of various query type of 

user is retrieved from the FC and ES efficiently. This 

reduces the query processing time. We compare our 

reasoning result with the IDRM [17] implemented by Bo 

Liu et al., and analyze the result. The result of analysis in 

Table 1 shows that IOI reasons out more number of triples 

when compared with IDRM. For IDRM reasons only the 

RDF property, class, domain and range elements. But IOI 

also infers the three OWL elements such as union, 

intersection and inverse which again results in the RDFS 

elements like subClassOf, domain and range. These inferred 

triples were also considered in constructing the FC and ES. 

Hence IOI based reasoning provides better results of nodes 

in the CFC and DRFC. This helps in answering the user 

query with more reasoning ability of IOI. Table1. 

Comparison Result 

 

CONCLUSION 
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In this paper, reasoning over the semantic data is performed. 

Large volume of data makes the reasoning process a 

challenging one. To avoid the complexity of reasoning, IOI 

method is proposed. The experiment is conducted using 

both IOI and IDRM [17]. The results show that IOI infers 

more number of triples than other reasoning methods 

comparatively because it infers the set and inverse elements 

also. In future, the method can be enhanced with more 

properties of OWL other than that considered here. Also the 

efficiency of the results obtained by the user query can be 

further improved. 
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