

Page |1

Journal of Science, Computing and Engineering Research (JSCER)

Volume-7, Issue-9, September 2024.

DOI: https://doi.org/10.46379/jscer.2024.0709

Performance Analysis of AES Techniques of Serial

Implementation Algorithms
Jushak Prodhan, Ibu Fatah, Yusfir Rumi

Assistant Professor, CSE Dept., ahangirnagar University Savar, Bangladesh

Article Information

Received : 02 Sept 2024

Revised : 06 Sept 2024

Accepted : 18 Sept 2024

Published : 22 Sept 2024

Corresponding Author:

 Jushak Prodhan

Abstract— Cryptography is the study of mathematical techniques related to aspects of

information security such as confidentiality, data integrity, entity authentication, and data origin

authentication. Most cryptographic algorithms function more efficiently when implemented in

hardware than in software running on single processor. However, systems that use hardware

implementations have significant drawbacks: they are unable to respond to flaws discovered in

the implemented algorithm or to changes in standards. As an alternative, it is possible to

implement cryptographic algorithms in software running on multiple processors. However, most

of the cryptographic algorithms like DES (Data Encryption Standard) or 3DES have some

drawbacks when implemented in software: DES is no longer secure as computers get more

powerful while 3DES is relatively sluggish in software. AES (Advanced Encryption Standard),

which is rapidly being adopted worldwide, provides a better combination of performance and

enhanced network security than DES or 3DES by being computationally more efficient than

these earlier standards. Furthermore, by supporting large key sizes of 128, 192, and 256 bits,

AES offers higher security against brute-force attacks.

Keywords: Cryptography, DES, AES, NIST, Plaintext, RSA.

Copyright © 2024: Jushak Prodhan, Ibu Fatah, Yusfir Rumi, This is an open access distribution, and reproduction in any

medium, provided Access article distributed under the Creative Commons Attribution License the original work is properly cited

License, which permits unrestricted use.

Citation: Jushak Prodhan, Ibu Fatah, Yusfir Rumi, “Performance Analysis of AES Techniques of Serial Implementation

Algorithms”, Journal of Science, Computing and Engineering Research, 7(9), Sep 2024.

I. INTRODUCTION

Cryptography is generally understood to be the study of

the principles and techniques by which information is

converted into an encrypted version that is difficult (ideally

impossible) for any unauthorized person to convert to the

original information, while still allowing the intended reader

to do so. In fact, cryptography covers rather more than

merely encryption and decryption. It is, in practice, a

specialized branch of information theory with substantial

additions from other branches of mathematics.

Cryptography is probably the most important aspect of

communications security [1] and is becoming increasingly

important as a basic building block for computer security.

The increased use of computer and communications systems

by the industry has increased the risk of theft of proprietary

information. Although these threats may require a variety of

countermeasures, cryptography is a primary method of

protecting valuable electronic information. In data and

telecommunications, cryptography is necessary when

communicating over any unsecured medium, which includes

just about any network, particularly the Internet. Within the

context of any application-to-application communication,

there are some specific security requirements, including the

following: Authentication: The process of proving one's

identity. Confidentiality: Ensuring that no one can read the

message except the intended receiver. Integrity: Assuring

the receiver that the received message has not been altered

in any way from the original. Non-repudiation: A

mechanism to prove that the sender really sent this message.

There are, in general, two types of cryptographic schemes

typically used to accomplish these goals: secret key (or

symmetric or conventional) cryptography and public-key (or

asymmetric) cryptography. In symmetric-key cryptography,

an algorithm is used to scramble the message using a secret

key in such a way that it becomes unusable to all except the

ones that have access to that secret key. The most widely

known symmetric cryptographic algorithm is DES,

developed by IBM in the seventies. It uses a key of 56 bits

and operates on chunks of 64 bits at a time. In public key

cryptography [4], algorithms use two different keys: a

private and a public one. A message encrypted with a

private key can be decrypted with its public key (and vice

versa). The owner of the key pair holds the private key, and

may distribute the public key to anyone. Someone who

wants to send a secret message uses the public key of the

intended receiver to encrypt it. Only the receiver holds the

private key and can decrypt it.

Performance Analysis of AES Techniques of Serial Implementation Algorithms

Available at https://jscer.org

Page | 2

II. DATA ENCRYPTION STANDARD (DES)

The most common symmetric-key cryptography scheme

used today is the Data Encryption Standard (DES) [2],

designed by IBM in the 1970s and adopted by the National

Bureau of Standards (NBS) [now the National Institute for

Standards and Technology (NIST)] in 1977 [2] for

commercial and unclassified government applications. DES

has been adopted as Federal Information Processing

Standard 46 (FIPS 46-3) and by the American National

Standards Institute as X3.92.

DES is a block-cipher employing a 56-bit key that

operates on 64-bit blocks. DES has a complex set of rules

and transformations that were designed specifically to yield

fast hardware implementations and slow software

implementations, although this latter point is becoming less

significant today since the speed of computer processors is

several orders of magnitude faster today than twenty years

ago. IBM also proposed a 112-bit key for DES, which was

rejected at the time by the government; the use of 112-bit

keys was considered in the 1990s, however, conversion was

never seriously considered.

1.2 AES: An Alternative to DES The symmetric-key

cryptography is efficient for encryption while the Public-key

cryptography facilitates efficient signatures (particularly

non-repudiation) and key management. Symmetric key

cryptography is faster than any currently available public-

key encryption method. On the other hand, the most widely

used symmetric-key encryption technique like DES is

vulnerable to a brute-force attack [3] because of its

inadequate key size compare to the processing power of

modern computer.

In order to increase the security of symmetric-key

cryptography, NIST in 1997 issued a call for proposals for a

new Advanced Encryption Standard (AES), which should

have security strength better than DES and significantly

improved efficiency. In addition, to these general

requirements, NIST specified that AES must be a symmetric

block cipher with a block length of 128 bits and support for

key lengths of 128, 192, and 256 bits.

III. MATERIALS AND METHODS

AES Cipher: The Rijndael proposal for AES [6] defined

a cipher in which the block length and the key length

specified to be 128, 192, or 256 bits. The AES specification

uses the same three key size alternatives but limits the block

length to 128 bits. A number of AES parameters (Table1)

depend on the key length. Most of the implementation of

AES uses the key length of 128 bits.

Table 1: AES Parameter

IV. OVERALL STRUCTURE OF AES

The overall structure of AES is depicted in figure 2. The

input to the encryption and decryption algorithms is a single

128-bit block. This block of input is depicted as a square

matrix of bytes. This block is copied into the state array,

which is modified at each stage of encryption or decryption.

After the final stage, state is copied to an output matrix.

These operations are depicted in figure: 3. similarly, the

128-bit key is depicted as a square matrix of bytes.

This key is then expanded into an array of key schedule

words; each word is four bytes and total key schedule is 44

words for the 128-bit key. The ordering of bytes within a

matrix is by column. So, for example, the first four bytes of

a 128-bit plaintext input to the encryption cipher occupy the

first column of the in matrix, the second four bytes occupy

the second column, and so on. Similarly, the first four bytes

of the expanded key, which form a word, occupy the first

column of the w matrix.

Several features of the overall AES structure [7]:

1. One noteworthy feature of this structure is that it is not

a Feistel structure. In the classic feistel structure, half of the

data block is used to modify the other half of the data block,

and then the half are swapped. Rijndael does not use a

Feistel structure but process the entire block in parallel

during each round using substitutions and permutations.

2. The key that is provided as input is expanded into an

array of forty-four 32-bit words, w[i]. Four distinct words

(128 bits) serve as a round key for each round; these are

indicated in Figure 2. 3. Four different stages are used, one

of permutation and three of substitution: Substitute bytes:

Uses an S-box to perform a byte-by-byte substitution of the

block. Shift rows: A simple permutation Mix Columns: A

substitution that makes use of arithmetic over GF (28) Add

round Key: A simple bitwise XOR of the current block with

a portion of the expanded

Performance Analysis of AES Techniques of Serial Implementation Algorithms

Available at https://jscer.org

Page | 3

key

4. The structure of AES is quite simple. For both

encryption and decryption, the cipher begins with an Add

Round Key stage, followed by nine rounds that each

includes all four stages, followed by a tenth round of three

stages. Figure 4 depicts the structure of a full encryption

round. 5. Only the Add Round Key stage makes use of the

key. For this reason, the cipher begins and ends with an Add

Round Key stage. Any other stage, applied at the beginning

or end, is reversible without knowledge of the key and so

would add no

security.

6. The Add Round Key stage is, in effect, a form of

Vernam cipher and by itself would not be formidable. The

other three stages together provide confusion, diffusion, and

nonlinearity, but by themselves would provide no security

because they do not use the key. The cipher is an alternating

operations of XOR encryption (Add Round Key) of a block,

followed by scrambling of the block (the other three stages),

and followed by XOR encryption, and so on. This scheme is

both efficient and highly secure. 7. Each stage is easily

reversible. For the Substitute Byte, Shift Row, and Mix

Columns stages, an inverse function is used in the

decryption algorithm. For the Add Round Key stage, the

inverse is achieved by XORing the same round key to the

block, using the result that A ⊕ A ⊕ B = B. 8. As with

most block ciphers [5], the decryption algorithm makes use

of the expanded key in reverse order. However, the

decryption algorithm is not identical to the encryption

algorithm. This is a consequence of the particular structure

of AES. 9. Once it is established that all four stages are

reversible, it is easy to verify that decryption does recover

the plaintext. Figure 2 lays out encryption and decryption

going in opposite vertical directions. At each horizontal

point (e.g.,the dashed line in the figure), State is the same

for both encryption and decryption. 10. The final round of

both encryption and decryption consists of only three stages.

Again, this is a consequence of the particular structure of

AES and is required to make the cipher reversible.

V. ALGORITHM FOR SERIAL IMPLEMENTATION OF AES

AES is an iterated block cipher, meaning that the initial

input block and cipher key undergoes multiple rounds of

transformation before producing the output. Each

intermediate cipher result is called a State. The block and

cipher key are often represented as an array of columns

where each array has 4 rows and each column represents a

single byte (8 bits). The number of columns in an array

representing the state or cipher key, then, can be calculated

as the block or key length divided by 32 (32 bits = 4 bytes).

An array representing a State will have Nb columns, where

Nb values of 4, 6, and 8 correspond to a 128-, 192-, and

256-bit block, respectively. Similarly, an array representing

a Cipher Key will have Nk columns, where Nk values of 4,

6, and 8 correspond to a 128-, 192-, and 256-bit key,

Performance Analysis of AES Techniques of Serial Implementation Algorithms

Available at https://jscer.org

Page | 4

respectively. The AES cipher itself has three operational

stages: 1. AddRound Key transformation 2. Nr-1 Rounds

comprising: • SubBytes transformation • ShiftRows

transformation • MixColumns transformation •

AddRoundKey transformation 3. A final Round comprising:

• SubBytes transformation • ShiftRows transformation •

AddRoundKey transformation The overall structure of AES

cipher is described below: Constants: int Nb = 4; int Nr =

10, 12, or 14; // rounds, for Nk = 4, 6, or 8 Inputs: array in of

4*Nb bytes // input plaintext array out of 4*Nb bytes //

output ciphertext array w of 4*Nb*(Nr+1) bytes // expanded

key Internal work array: state, 2-dim array of 4*Nb bytes, 4

rows and Nb cols

2.3 Run Time Complexity of the Serial

Implementation

The number of steps an algorithm requires to solve a

specific problem is denoted as the running time of the

algorithm. In general, the running time depends on the size

of the problem and on the respective input. In order to

evaluate an algorithm independently of the input, the

notation of time complexity is introduced. The time

complexity T(n) is a function of the problem size n. The

value of T(n) is the running time of the algorithm in the

worst case, i.e. the number of steps it requires at most with

an arbitrary input. However, time complexity function does

not give the actual execution time of an algorithm rather it

gives an idea how the time required for an algorithm

changes as the problem size increases.

In order to compute the run time complexity of the AES

algorithm, the time complexity function for each

transformation has to be considered. As the AES algorithm

consists of only four different types of transformation, the

time complexity function of AES will depend on the time

complexity of each transformation. From the time

complexity of different transformation function, it is found

that the AES algorithm has a linear complexity that means

when the value of N (number of data block) ranges from 10

– 100000, the execution time will vary from 10-5 second to

1 seconds (each operation is assumed to take 10-6 second).

However, when the value of N is greater than 108, the

execution time of the algorithm will require several days to

encrypt or decrypt. The following table will give a clear

idea:

2.4 Computer time used for different data blocks

2.5 PARALLEL IMPLEMENTAION OF AES

The current trend in high performance computing is

clustering and distributed computing. In clusters, powerful

low cost workstations and/or PCs are linked through fast

communication interfaces to achieve high performance

parallel computing. Recent increases in communication

speeds, microprocessor clock speeds, availability of high

performance public domain software including operating

system, compiler tools and message passing libraries, make

cluster based computing appealing in terms of both high

performance computing and cost effectiveness. For

implementing the AES algorithm in parallel, the MPI based

cluster is used in the present section. The performance of a

parallel algorithm depends not only on input size but also on

the architecture of the parallel computer, the number of

processors, and the interconnection network. In this chapter,

different types of parallel architectures and interconnection

networks are discussed before actually implementing the

parallel algorithm of AES. At the end of this chapter, some

sample input/output are shown varying the key size, number

of rounds and the number of processors to verify the

correctness of parallel algorithm. Finally, the run time

complexity of the parallel algorithm is shown to measure the

performance improvement of the parallel implementation

over the serial implementation.

2.6 Algorithm for Parallel Implementation of AES

Performance Analysis of AES Techniques of Serial Implementation Algorithms

Available at https://jscer.org

Page | 5

There are two major components of parallel algorithm

design. The first one is the identification and specification of

the overall problem as a set of tasks that can be performed

concurrently. The second is the mapping of these tasks onto

different processors so that the overall communication

overhead is minimized. The first component specifies

concurrency, and the second one specifies data locality. The

performance of an algorithm on a parallel architecture

depends on both. Concurrency is necessary to keep the

processors busy. Locality is important because it minimizes

communication overhead. Ideally, a parallel algorithm

should have maximum concurrency and locality. However,

for most algorithms, there is a tradeoff. An algorithm that

has more concurrency often has less locality. To implement

the AES algorithm in parallel, data blocks (Figure 5) and a

key are distributed among the available processors. Each

processor will encrypt different data blocks using the same

key. For example, in order to encrypt n number of data

blocks with p processors, n/p data blocks will be encrypted

by each processor. As each processor has its own data

blocks and a key (increases data locality), all the 10/12/14

rounds (consists of four transformations) will be executed

by each processor for encrypting each data block. After

encrypting all the data blocks of each processor, the

encrypted data will be merged in tree structure and return

back to the main processor. For example, if there are four

processors working in parallel, processor P1 will send its

encrypted data to P0 and P0 will merge its encrypted data

with P1; processor P3 will send its encrypted data to P2, and

P2 will merge its encrypted data with P3.

Finally processor P2 will send its (P2 & P3) encrypted

data to P0 and P0 will merge its (P0 & P1) encrypted data

with P2. This technique of merging and returning data to the

main processor will increase the concurrency and reduce the

idle time of each processor. The overall parallel algorithm of

AES cipher is described below: Constant: ArraySize = 160 ;

int Nb = 4; int Nr = 10, 12, or 14; // rounds, for Nk = 4, 6, or

8

Inputs: int nProcessors = 2/4/8/16 processors int

tNumberOfBlocks // number of blocks to be encrypted

unsigned char key[16] // key for encrypting data int k = 0;

array w of 4*Nb*(Nr+1) bytes // expanded key Internal

work array: my_pointer is an array of pointers where each

element of the array points to an array of data blocks. Each

processor will have the variable my_pointer, where the first

index will contain the data blocks for each processor.

Algorithm: void Cipher(byte[] in, byte[] out, byte[] w) {

nProcessors = 4 int nBlockPerProcessor =

tNumberOfBlocks / nProcessors int rank = processor’s label

if (rank = = processor 0){ my_pointer[0] =

nBlockPerProcessor data blocks read the key send

nBlockPerProcessor data blocks to rest of the processors

send the same key to other processors } else{// for all other

processors receive the nBlockPerProcessor data blocks from

processor 0 my_pointer[0] = nBlockPerProcessor data

blocks receive the key from the processor 0 } // each

processor will execute this part of the algorithm. //Encrytion

Encryption(my_pointer[0]); // Encrypted data are merged in

tree structure and return back to the // main processor

BTM(0, nProcessors -1); //Decryption

Decryption(my_pointer[1]); BTM(0, nProcessors -1);}

3. SAMPLE INPUT/OUTPUT 128-bit data, 128-bit Key

2 processors, each processor processes 4 data blocks

Encrypting . . .

Performance Analysis of AES Techniques of Serial Implementation Algorithms

Available at https://jscer.org

Page | 6

VI. CONCLUSION

In the figure 6 and 7, the performance of serial and

parallel implementation of AES is shown with 2 processors.

The speedup factor of AES is given in figure 8 with 2

processors.

Figure 6: Performance of AES in Serial

After implementing the AES algorithm on a single

processor, it is found that the AES algorithm has a linear

complexity that means when the value of N (number of data

blocks) ranges from 10 – 100000, the execution time will

vary from 10-5 second to 1 seconds (each operation is

assumed to take 10-6 second). However, when the value of

N is greater than 108, the execution time of the algorithm

will require several days to encrypt or decrypt. This creates

the reason for implementing the algorithm in parallel. After

implementing the AES algorithm in parallel, it is found that

the performance of AES algorithm increases significantly as

the number of processor increases. It is not possible to get

the speedup factor equal to P (number of processor), as

some parallel processing overhead is also occurred during

the implementation of AES in parallel.

REFERENCES

[1]. P. Nirmala, T. Manimegalai, J. R. Arunkumar, S. Vimala, G.

Vinoth Rajkumar, Raja Raju, "A Mechanism for Detecting the

Intruder in the Network through a Stacking Dilated CNN

Model", Wireless Communications and Mobile Computing,

vol. 2022, Article ID 1955009, 13 pages, 2022.

https://doi.org/10.1155/2022/1955009.

[2]. D. Sathyanarayanan, T. S. Reddy, A. Sathish, P. Geetha, J. R.

Arunkumar and S. P. K. Deepak, "American Sign Language

Recognition System for Numerical and Alphabets," 2023

International Conference on Research Methodologies in

Knowledge Management, Artificial Intelligence and

Telecommunication Engineering (RMKMATE), Chennai,

India, 2023, pp. 1-6, doi:

10.1109/RMKMATE59243.2023.10369455.

[3]. J. R. Arunkumar, Tagele berihun Mengist, 2020” Developing

Ethiopian Yirgacheffe Coffee Grading Model using a Deep

Learning Classifier” International Journal of Innovative

Technology and Exploring Engineering (IJITEE) ISSN: 2278-

3075, Volume-9 Issue-4, February 2020. DOI:

10.35940/ijitee.D1823.029420.

[4]. Ashwini, S., Arunkumar, J.R., Prabu, R.T. et al. Diagnosis

and multi-classification of lung diseases in CXR images using

optimized deep convolutional neural network. Soft

Comput (2023). https://doi.org/10.1007/s00500-023-

09480-3

[5]. J.R.Arunkumar, Dr.E.Muthukumar,” A Novel Method to

Improve AODV Protocol for WSN” in Journal of Engineering

Sciences” ISSN NO: 0377-9254Volume 3, Issue 1, Jul 2012.

[6]. R. K, A. Shameem, P. Biswas, B. T. Geetha, J. R. Arunkumar

and P. K. Lakineni, "Supply Chain Management Using

Blockchain: Opportunities, Challenges, and Future

Directions," 2023 Second International Conference on

Informatics (ICI), Noida, India, 2023, pp. 1-6, doi:

10.1109/ICI60088.2023.10421633.

[7]. Arunkumar, J. R. "Study Analysis of Cloud Security

Chanllenges and Issues in Cloud Computing

Technologies." Journal of Science, Computing and

Engineering Research 6.8 (2023): 06-10.

[8]. J. R. Arunkumar, R. Raman, S. Sivakumar and R. Pavithra,

"Wearable Devices for Patient Monitoring System using

IoT," 2023 8th International Conference on Communication

and Electronics Systems (ICCES), Coimbatore, India, 2023,

pp. 381-385, doi: 10.1109/ICCES57224.2023.10192741.

Performance Analysis of AES Techniques of Serial Implementation Algorithms

Available at https://jscer.org

Page | 7

[9]. S. Sugumaran, C. Geetha, S. S, P. C. Bharath Kumar, T. D.

Subha and J. R. Arunkumar, "Energy Efficient Routing

Algorithm with Mobile Sink Assistance in Wireless Sensor

Networks," 2023 International Conference on Advances in

Computing, Communication and Applied Informatics

(ACCAI), Chennai, India, 2023, pp. 1-7, doi:

10.1109/ACCAI58221.2023.10201142.

[10]. R. S. Vignesh, V. Chinnammal, Gururaj.D, A. K. Kumar, K.

V. Karthikeyan and J. R. Arunkumar, "Secured Data Access

and Control Abilities Management over Cloud Environment

using Novel Cryptographic Principles," 2023 International

Conference on Advances in Computing, Communication and

Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-8,

doi: 10.1109/ACCAI58221.2023.10199616.

[11]. Syamala, M., Anusuya, R., Sonkar, S.K. et al. Big data

analytics for dynamic network slicing in 5G and beyond with

dynamic user preferences. Opt Quant Electron 56, 61 (2024).

https://doi.org/10.1007/s11082-023-05663-2

[12]. Krishna Veni, S. R., and R. Anusuya. "Design and Study

Analysis Automated Recognition system of Fake Currency

Notes." Journal of Science, Computing and Engineering

Research 6.6 (2023): 16-20.

[13]. V. RamKumar, S. Shanthi, K. S. Kumar, S. Kanageswari, S.

Mahalakshmi and R. Anusuya, "Internet of Things Assisted

Remote Health and Safety Monitoring Scheme Using

Intelligent Sensors," 2023 International Conference on

Advances in Computing, Communication and Applied

Informatics (ACCAI), Chennai, India, 2023, pp. 1-8, doi:

10.1109/ACCAI58221.2023.10199766.

[14]. R. S. Vignesh, R. Sankar, A. Balaji, K. S. Kumar, V. Sharmila

Bhargavi and R. Anusuya, "IoT Assisted Drunk and Drive

People Identification to Avoid Accidents and Ensure Road

Safety Measures," 2023 International Conference on

Advances in Computing, Communication and Applied

Informatics (ACCAI), Chennai, India, 2023, pp. 1-7, doi:

10.1109/ACCAI58221.2023.10200809.

[15]. I. Chandra, G. Sowmiya, G. Charulatha, S. D, S. Gomathi and

R. Anusuya, "An efficient Intelligent Systems for Low-Power

Consumption Zigbee-Based Wearable Device for Voice Data

Transmission," 2023 International Conference on Artificial

Intelligence and Knowledge Discovery in Concurrent

Engineering (ICECONF), Chennai, India, 2023, pp. 1-7, doi:

10.1109/ICECONF57129.2023.10083856.

[16]. G. Karthikeyan, D. T. G, R. Anusuya, K. K. G, J. T and R. T.

Prabu, "Real-Time Sidewalk Crack Identification and

Classification based on Convolutional Neural Network using

Thermal Images," 2022 International Conference on

Automation, Computing and Renewable Systems (ICACRS),

Pudukkottai, India, 2022, pp. 1266-1274, doi:

10.1109/ICACRS55517.2022.10029202.

[17]. R. Meena, T. Kavitha, A. K. S, D. M. Mathew, R. Anusuya

and G. Karthik, "Extracting Behavioral Characteristics of

College Students Using Data Mining on Big Data," 2023

International Conference on Artificial Intelligence and

Knowledge Discovery in Concurrent Engineering

(ICECONF), Chennai, India, 2023, pp. 1-7, doi:

10.1109/ICECONF57129.2023.10084276.

[18]. S. Bharathi, A. Balaji, D. Irene. J, C. Kalaivanan and R.

Anusuya, "An Efficient Liver Disease Prediction based on

Deep Convolutional Neural Network using Biopsy

Images," 2022 3rd International Conference on Smart

Electronics and Communication (ICOSEC), Trichy, India,

2022, pp. 1141-1147, doi:

10.1109/ICOSEC54921.2022.9951870.

[19]. I. Chandra, G. Sowmiya, G. Charulatha, S. D, S. Gomathi and

R. Anusuya, "An efficient Intelligent Systems for Low-Power

Consumption Zigbee-Based Wearable Device for Voice Data

Transmission," 2023 International Conference on Artificial

Intelligence and Knowledge Discovery in Concurrent

Engineering (ICECONF), Chennai, India, 2023, pp. 1-7, doi:

10.1109/ICECONF57129.2023.10083856.

[20]. Revathi, S., et al. "Developing an Infant Monitoring System

using IoT (INMOS)." International Scientific Journal of

Contemporary Research in Engineering Science and

Management 6.1 (2021): 111-115.

[21]. J.R.Arunkumar, Dr.E.Muthukumar,‖ A Novel Method

to Improve AODV Protocol for WSN‖ in Journal of

Engineering Sciences‖ ISSN NO: 0377-9254Volume 3,

Issue 1, Jul 2012.
[22]. R. S. Vignesh, A. Kumar S, T. M. Amirthalakshmi, P.

Delphy, J. R. Arunkumar and S. Kamatchi, "An Efficient and

Intelligent Systems for Internet of Things Based Health

Observance System for Covid 19 Patients," 2023

International Conference on Artificial Intelligence and

Knowledge Discovery in Concurrent Engineering

(ICECONF), Chennai, India, 2023, pp. 1-8, doi:

10.1109/ICECONF57129.2023.10084066.

[23]. I. Chandra, K. V. Karthikeyan, R. V, S. K, M. Tamilselvi and

J. R. Arunkumar, "A Robust and Efficient Computational

Offloading and Task Scheduling Model in Mobile Cloud

Computing," 2023 International Conference on Artificial

Intelligence and Knowledge Discovery in Concurrent

Engineering (ICECONF), Chennai, India, 2023, pp. 1-8, doi:

10.1109/ICECONF57129.2023.10084293.

[24]. R. K, A. Shameem, P. Biswas, B. T. Geetha, J. R. Arunkumar

and P. K. Lakineni, "Supply Chain Management Using

Blockchain: Opportunities, Challenges, and Future

Directions," 2023 Second International Conference on

Informatics (ICI), Noida, India, 2023, pp. 1-6, doi:

10.1109/ICI60088.2023.10421633.

[25]. J. R. Arunkumar, and R. Anusuya, “OCHRE: A Methodology

for the Deployment of Sensor Networks.” American Journal

of Computing Research Repository, vol. 3, no. 1 (2015): 5-8.

https://doi.org/10.1007/s11082-023-05663-2

