

Journal of Science, Computing and Engineering Research (JSCER) Volume-8, Issue-6, June 2025.

DOI: https://doi.org/10.46379/jscer.2025.080606

Automatic Motor Pumping for Agriculture Land Purpose for Soil Moisture Content using Advance Technique Based

S. Srileka, P.Subbulakshmi

Assistant Professor, Department of ECE, S.R.S. College of Engineering & Technology, Arasur, Villupuram, Tamilnadu, India

Article Information

Received : 11 June 2025
Revised : 13 June 2025
Accepted : 14 June 2025
Published : 17 June 2025

Corresponding Author:

Srileka, P.Subbulakshmi

Abstract— This The title itself indicates that the system checks the moisture content in the soil, based on that pumping motor will automatically pumps the water into the field. Here we are using soil moisture sensor. By using this sensor, we can find whether the soil is wet or dry. If it is dry, pumping motor will pump the water. In this system, the main controlling device is microcontroller. Here soil sensor will give the status of the soil to the microcontroller, based on that microcontroller will display the status of the soil on the LCD and switch on or off the pumping motor through relay. The pumping motor will pump the water into the field by using drip water system until the field is wet which is continuously monitor by the microcontroller. In irrigation process, most parameter of monitoring is soil, so we have to monitor the soil condition, whether the soil is dry or Wet. If it is dry, then by using pumping motor, water has to be pumped automatically. The main aim of our system presenting here is to monitor the moisture content in the soil in cultivating field. Based on soil moisture, pumping motor will be automatically switch on or off through relay. This saves the water at the same time and on the other hand the plant can get optimum level of water, so increasing productivity of crop.

Keywords: Microcontroller, LCD, Agriculture Techniques, Soil moisture sensor, Pumping motor, Relay and GSM Modem etc.

Copyright © 2025: S. Srileka, P.Subbulakshmi, This is an open access distribution, and reproduction in any medium, provided Access article distributed under the Creative Commons Attribution License the original work is properly cited License, which permits unrestricted use.

Citation: S. Srileka, P.Subbulakshmi, "Advance Technique Based Automatic Motor Pumping for Agriculture Land Purpose for Soil Moisture Content", Journal of Science, Computing and Engineering Research, 8(04), June 2025.

I. INTRODUCTION

We consider the problem of monitoring soil moisture evolution using a wireless GSM network. Continuously sampling moisture levels with these soil moisture sensors incurs high-maintenance and energy consumption costs, which are particularly undesirable for wireless networks. Our main hypothesis is that a sparser set of measurements can meet the monitoring objectives in an energy-efficient manner. The underlying idea is that we can trade off some inaccuracy in estimating soil moisture evolution for a significant reduction in energy consumption. We investigate how to dynamically schedule the sensor measurements so as to balance this tradeoff. Unlike many prior studies on sensor scheduling that make generic assumptions on the statistics of the observed phenomenon, we obtain statistics of soil moisture evolution from a physical model. The result is a scalable, implementable technology that we have tested and validated numerically and in the field. By using this sensor, we can find whether the soil is wet or dry. If it is dry, pumping motor will pump the water. In this system, the main controlling device is microcontroller. Here soil sensor will give the status of the soil to the sensor Amplifier, based on that microcontroller will display the status of the soil on the LCD and switch on or off the pumping motor through

relay. The pumping motor will pump the water into the field by until the field is wet which is continuously monitor by the microcontroller II. LITERATURE SURVEY This paper describes an application of a wireless sensor network for low-cost wireless controlled irrigation solution and real time monitoring of water content of soil based on soil moisture sensors[1]. Precision watersaving irrigation automatic control system by plant physiology is discussed in [5] Shock, C.C., J.M. Barnum, and M. Seddigh. The wireless sensor network is used for precision agriculture where real time data of pest control in order to offset the adverse conditions. The environmental properties are sensed and relayed to a central repository [10]. An optimized agricultural production by carefully tailoring soil and crop management to correspond to the unique condition found in each field while maintaining environmental quality [6]. The problem of power distribution provided an overview of wireless sensor network by managing the equal power distribution by using GSM network. The system sets the irrigation time depending on the temperature and humidity reading from sensors and type of crop and can automatically cairrigate the field when unattended. Information is exchanged between far end and designed system via SMS on GSM network. GSM operates through SMSes and is the

link between ARM processor and centralized unit. The project aims to implement the basic application of atomizing the irrigation field by programming the components and building the necessary hardware. This project is used to find the exact field condition. GSM is used to inform the user about the exact field condition. The information is given on user request in form of SMS [10].

II. BLOCK DIAGRAM

Fig-1 Block Diagram of Soil Moisture Content Based Automatic Motor Starter For Irrigation Purpose 1) GSM Modem A GSM Modem is a specialized type modem which accepts a SIM card, operates over a subscription to a mobile operator, just like mobile phone. 2) Soil Moisture Sensor Fig-2 Soil Moisture Sensor The heart of the sensor module is the Microcontroller to which the soil moisture sensor, temperature sensor and wind sensor modules are interfaced. That the system will checks the moisture conten in th soil. based on that pumping motor will automatically pumps the water into the field. Here we are using soil moisture sensor. By using this sensor, we can find whether the soil is wet or dry Fig-3 Soil Moisture Sensor Local Circuit 3.3 Microcontroller Fig-4 Microcontroller Block Diagram The Intel MCS-51 commonly referred to as 8051 is a Harvard **CISC** instruction architecture, set, single microcontroller (µC) series which was developed by Intel in 1980 for use in embedded systems. Intel's original versions were popular in the 1980s and early 1990s and enhanced binary compatible derivatives remain popular today. Intel's original MCS-51 family was developed using NMOS technology, but later versions, used CMOS technology and consume less power than their NMOS predecessors. This made them more suitable for batterypowered devices. 3.4 The Relay Module A relay is an electrically operated switch. Many relays use an electromagnet to operate a switching mechanism mechanically, but other operating principles are also used. Relays were used extensively in telephone exchanges and early computers to perform logical operations. 3) 3.5 LCD Module A liquid-crystal display (LCD) is a flat panel display, electronic visual display, or video display that uses the light modulating properties of liquid crystals. Liquid crystals do not emit light directly. LCDs are available to display arbitrary images, such as preset words, digits, and 7-segment displays as in a digital clock.

III. FRAMEWORK FOR PROPOSED SYSTEM

The technical questions arising in precision agriculture are all focusing upon increasing the efficiency of the field which results from networking sensors to monitor important spatiotemporal patterns in the field and integrating the data to display or record information, and also to actuate further human or automatic responses. The Fig-5 Proposed System sensors that can be used in agricultural field are temperature, soil makeup, humidity, mechanical stress level monitoring.

Fig-6 Hardware Module In the field of agriculture the most important part is: firstly, to get the information about the fertility of soil and secondly moisture content of soil. After measuring these two factors a farmer can start sowing of seeds. Here a system is developed based on GSM network. The sensor nodes can obtain the soil moisture, temperature, humidity information in real time, and then transferred to the remote monitoring centre by the gateway via the This intelligent agriculture transmission network. monitoring system has the useful characteristics of low power consumption, low cost, large network capacity, flexible disposition, and minor influence on the natural environment. In irrigation process the water level is sensed by the sensors and the information are processed by the controller and transmitted over the GSM module. At the base station the data is received by the Receiver module and transferred to PC through RS232 interface. The data will be processed by the microcontroller and then can be transmitted to farmer's mobile phone using GSM module. Then these commands can be further given by the farmer through GSM which will initiate or terminate the irrigation process via relay controlled motor in the field depending on the moisture conditions of the soil. This flow chart gives an outline of the systems general operation. The main loop runs 10 times a second, each time servicing the next channel. When it's done with the fifth channel, it does the first channel. "ML" in the flowchart refers to the variable into which the 10 bit result of the ADC is read into. ML, in this case, stands for moisture-level. Each of the five channels have their own set of Presets The minimum moisture maximum moisture, minimum time between water, and maximum time between water. The ADC returns a value from 0 to 1023, depending on resistance of the soil. All Presets can be set with any number from 0 to 4095, although setting a moisture level preset above 1023 is of no use. As for min./max. Time, valid and useful setting range is from 0 to 4095 hours. This allows up to about 170 day periods. When the learn button is pressed, each channel only updates its own set of

The "Clear" feature causes the system to read the moisture of each plant's soil, and set each channel's min. and max. presets to equal the current moisture reading. This causes any change in soil conductivity to be seen as a "new high" or a "new low", which can be learned with subsequent presses of the "Learn" button.

IV. ADVANTAGES OF PROPOSED SYSTEM

By this project we can control the moisture content of the soil in the cultivating field. Based on soil moisture, pumping motor will be automatically switch on or off through relay. This saves the water at the same time and on the other hand the plant can get optimum level of water, so increasing productivity of crop.

V. RESULT

The result is a scalable, implementable technology that we have tested and validated numerically and in the field. By using this sensor, we can find whether the soil is wet or dry. If it is dry, pumping motor will pump the water automatically.

VI. CONCLUSION

The Soil moisture content based irrigation system was developed and successfully implemented along with flow sensor. Salient features of the system are: Closed loop automatic irrigation system, temperature and water usage monitoring. User can easily preset the levels of the Moisture and is regularly updated about current value of all Parameters on LCD display. In future, other important soil parameters namely soil pH, soil electrical conductivity will also be incorporated in the system.

REFERENCES

- [1]. P. Nirmala, T. Manimegalai, J. R. Arunkumar, S. Vimala, G. Vinoth Rajkumar, Raja Raju, "A Mechanism for Detecting the Intruder in the Network through a Stacking Dilated CNN Model", Wireless Communications and Mobile Computing, vol. 2022, Article ID 1955009, 13 pages, 2022. https://doi.org/10.1155/2022/1955009.
- [2]. D. Sathyanarayanan, T. S. Reddy, A. Sathish, P. Geetha, J. R. Arunkumar and S. P. K. Deepak, "American Sign Language Recognition System for Numerical and Alphabets," 2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE), Chennai, India, 2023, pp. 1-6, doi: 10.1109/RMKMATE59243.2023.10369455.
- [3]. J. R. Arunkumar, Tagele berihun Mengist, 2020" Developing Ethiopian Yirgacheffe Coffee Grading Model using a Deep Learning Classifier" International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-9 Issue-4, February 2020. DOI: 10.35940/ijitee.D1823.029420.
- [4]. Ashwini, S., Arunkumar, J.R., Prabu, R.T. et al. Diagnosis and multi-classification of lung diseases in CXR images using optimized deep convolutional neural network. Soft Comput (2023). https://doi.org/10.1007/s00500-023-09480-3
- [5]. J.R.Arunkumar, Dr.E.Muthukumar," A Novel Method to Improve AODV Protocol for WSN" in Journal of Engineering Sciences" ISSN NO: 0377-9254Volume 3, Issue 1, Jul 2012.
- [6]. R. K, A. Shameem, P. Biswas, B. T. Geetha, J. R. Arunkumar and P. K. Lakineni, "Supply Chain Management Using Blockchain: Opportunities, Challenges, and Future Directions," 2023 Second International Conference on Informatics (ICI), Noida, India, 2023, pp. 1-6, doi: 10.1109/ICI60088.2023.10421633.
- [7]. Arunkumar, J. R. "Study Analysis of Cloud Security Chanllenges and Issues in Cloud Computing Technologies." Journal of Science, Computing and Engineering Research 6.8 (2023): 06-10.

- [8]. J. R. Arunkumar, R. Raman, S. Sivakumar and R. Pavithra, "Wearable Devices for Patient Monitoring System using IoT," 2023 8th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2023, pp. 381-385, doi: 10.1109/ICCES57224.2023.10192741.
- [9]. S. Sugumaran, C. Geetha, S. S, P. C. Bharath Kumar, T. D. Subha and J. R. Arunkumar, "Energy Efficient Routing Algorithm with Mobile Sink Assistance in Wireless Sensor Networks," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ACCAI58221.2023.10201142.
- [10].R. S. Vignesh, V. Chinnammal, Gururaj.D, A. K. Kumar, K. V. Karthikeyan and J. R. Arunkumar, "Secured Data Access and Control Abilities Management over Cloud Environment using Novel Cryptographic Principles," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ACCAI58221.2023.10199616.
- [11].Syamala, M., Anusuya, R., Sonkar, S.K. et al. Big data analytics for dynamic network slicing in 5G and beyond with dynamic user preferences. Opt Quant Electron 56, 61 (2024). https://doi.org/10.1007/s11082-023-05663-2
- [12].Krishna Veni, S. R., and R. Anusuya. "Design and Study Analysis Automated Recognition system of Fake Currency Notes." Journal of Science, Computing and Engineering Research 6.6 (2023): 16-20.
- [13]. V. RamKumar, S. Shanthi, K. S. Kumar, S. Kanageswari, S. Mahalakshmi and R. Anusuya, "Internet of Things Assisted Remote Health and Safety Monitoring Scheme Using Intelligent Sensors," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ACCAI58221.2023.10199766.
- [14] R. S. Vignesh, R. Sankar, A. Balaji, K. S. Kumar, V. Sharmila Bhargavi and R. Anusuya, "IoT Assisted Drunk and Drive People Identification to Avoid Accidents and Ensure Road Safety Measures," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ACCAI58221.2023.10200809.
- [15].I. Chandra, G. Sowmiya, G. Charulatha, S. D, S. Gomathi and R. Anusuya, "An efficient Intelligent Systems for Low-Power Consumption Zigbee-Based Wearable Device for Voice Data Transmission," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ICECONF57129.2023.10083856.
- [16].G. Karthikeyan, D. T. G, R. Anusuya, K. K. G, J. T and R. T. Prabu, "Real-Time Sidewalk Crack Identification and Classification based on Convolutional Neural Network using Thermal Images," 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, 2022, pp. 1266-1274, doi: 10.1109/ICACRS55517.2022.10029202.
- [17].R. Meena, T. Kavitha, A. K. S, D. M. Mathew, R. Anusuya and G. Karthik, "Extracting Behavioral Characteristics of College Students Using Data Mining on Big Data," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering

- (ICECONF), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ICECONF57129.2023.10084276.
- [18].S. Bharathi, A. Balaji, D. Irene. J, C. Kalaivanan and R. Anusuya, "An Efficient Liver Disease Prediction based on Deep Convolutional Neural Network using Biopsy Images," 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2022, pp. 1141-1147, doi: 10.1109/ICOSEC54921.2022.9951870.
- [19]. I. Chandra, G. Sowmiya, G. Charulatha, S. D, S. Gomathi and R. Anusuya, "An efficient Intelligent Systems for Low-Power Consumption Zigbee-Based Wearable Device for Voice Data Transmission," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ICECONF57129.2023.10083856. I. Chandra, K. V. Karthikeyan, R. V, S. K, M. Tamilselvi and J. R. Arunkumar, "A Robust and Efficient Computational Offloading and Task Scheduling Model in Mobile Cloud Computing," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ICECONF57129.2023.10084293.
- [20] Revathi, S., et al. "Developing an Infant Monitoring System using IoT (INMOS)." International Scientific Journal of Contemporary Research in Engineering Science and Management 6.1 (2021): 111-115.
- [21].R. K, A. Shameem, P. Biswas, B. T. Geetha, J. R. Arunkumar and P. K. Lakineni, "Supply Chain Management Using Blockchain: Opportunities, Challenges, and Future Directions," 2023 Second International Conference on Informatics (ICI), Noida, India, 2023, pp. 1-6, doi: 10.1109/ICI60088.2023.10421633.
- [22].J.R.Arunkumar. "Comprehensice Analysis of Security Issues in Cloud Computing Technologies", Journal of Science, Computing and Engineering Research, 6(5), 06-10, June 2023.
- [23].S. Sugumaran, C. Geetha, S. S, P. C. Bharath Kumar, T. D. Subha and J. R. Arunkumar, "Energy Efficient Routing Algorithm with Mobile Sink Assistance in Wireless Sensor Networks," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ACCAI58221.2023.10201142.
- [24] I. Chandra, K. V. Karthikeyan, R. V, S. K, M. Tamilselvi and J. R. Arunkumar, "A Robust and Efficient Computational Offloading and Task Scheduling Model in Mobile Cloud Computing," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ICECONF57129.2023.10084293.
- [25].R. S. Vignesh, A. Kumar S, T. M. Amirthalakshmi, P. Delphy, J. R. Arunkumar and S. Kamatchi, "An Efficient and Intelligent Systems for Internet of Things Based Health Observance System for Covid 19 Patients," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ICECONF57129.2023.10084066.
- [26].DC Jullie Josephine, J Sudhakar, T Helan Vidhya, R Anusuya, G Ramkumar, "An Improved Multi class Breast

- cancer classification and Abnormality Detection based on Modified Deep Learning Neural Network Principles", Deep Learning in Biomedical Signal and Medical Imaging, CRC Press, Taylor and Francis, 2024.
- [27] R. Anusuya, Pragya Vashishtha, "Real Automatic Number Plate Image Detection With Yolo Algorithms", Journal of Science, Computing and Engineering Research, 7(7), July 2024.
- [28]. K. Shetty, S. Tyagi, A. Jha, D. N. M. K. Rao, J. R. Arunkumar and L. R, "Natural Language Processing in Strategic Planning Analysis," 2024 Second International Conference Computational and Characterization Techniques in Engineering & Sciences (IC3TES), Lucknow, India, 2024, pp. 1-5, doi: 10.1109/IC3TES62412.2024.10877514.
- [29].S. Sugumaran, C. Geetha, S. S, P. C. Bharath Kumar, T. D. Subha and J. R. Arunkumar, "Energy Efficient Routing Algorithm with Mobile Sink Assistance in Wireless Sensor Networks," 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ACCAI58221.2023.10201142.
- [30] R. S. Vignesh, A. Kumar S, T. M. Amirthalakshmi, P. Delphy, J. R. Arunkumar and S. Kamatchi, "An Efficient and Intelligent Systems for Internet of Things Based Health Observance System for Covid 19 Patients," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ICECONF57129.2023.10084066.
- [31].Jullie Josephine DC, Sudhakar J, Helan Vidhya T, Anusuya R, Ramkumar G. 15 An Improved Multi. Deep Learning in Biomedical Signal and Medical Imaging. 2024 Sep 30:237.
- [32]. Arunkumar, J.R., Anusuya, R., Chilukuri, P., Ramkumar Prabhu, M. (2024). Secure Data Transfer and Deletion Using Secure Encryption Algorithm in Cloud Computing. In: Singh, N., Bashir, A.K., Kadry, S., Hu, YC. (eds) Proceedings of the 1st International Conference on Intelligent Healthcare and Computational Neural Modelling. ICIHCNN 2022. Advanced Technologies and Societal Change. Springer, Singapore. https://doi.org/10.1007/978-981-99-2832-3 84
- [33].G. Manoharan, P. D. Sawant, J. Vanitha, M. Lourens, R. Anusuya and I. Bhati, "Cognitive Computing for HR Decision-Making," 2024 Second International Conference Computational and Characterization Techniques in Engineering & Sciences (IC3TES), Lucknow, India, 2024, pp. 1-5, doi: 10.1109/IC3TES62412.2024.10877480.
- [34].S. Sivakumar, R. Anusuya, V. Nagaraju, L. P. Narendruni and R. Thamizhamuthu, "QoS Based Efficient Link and Consistent Routing in Wireless Sensor Network," 2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bengaluru, India, 2023, pp. 1241-1246, doi: 10.1109/IITCEE57236.2023.10091080.