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Abstract—Software quality is one of the essential aspects of a software. With increasing 

demand, software designs are becoming more complex, increasing the probability of software 

defects. Testers improve the quality of software by fixing defects. Hence the analysis of defects 

significantly improves software quality. The complexity of software also results in a higher 

number of defects, and thus manual detection can become a very time-consuming process. The K 

Neighbors Classifier (KNN) exhibited high accuracy (0.99) and well- balanced precision (0.98), 

recall (0.96), and F1-Score (0.93), indicating robust predictive capabilities. The Ensemble model, 

a kin to the Decision Tree, demonstrated  exceptional accuracy (0.99) and perfect precision, 

recall, and F1-Score, affirming its effectiveness in software defect prediction. 
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I. INTRODUCTION 

With growing demand and technology, the software 

industry is rapidly evolving. Since humans do most of the 

software development, defects will inevitably occur. In 

general, defects can be defined as undesired or unacceptable 

deviations in software documents, programs, and data 

[1].Defects may exist in requirements analysis because the 

product manager misinterprets the customer's needs, and as 

a result, this defect will also carry on to the system design 

phase. Defects may also occur in the code due to 

inexperienced coders. Defects significantly impact software 

quality, such as increased software maintenance costs, 

especially in healthcare, and aerospace software defects can 

have serious consequences. If the fault is detected after 

deployment, it causes an overhead on the development team 

as they need to re-design some software modules, which 

increases the development costs. Defects are nightmares for 

reputed  

II. CONCEPTS AND OVERVIEW OF SOFTWARE DEFECTS 

A. Concept of software defects 

Since analysts often can't distinguish between software 

defects and programming faults, errors, and failure, this 

article utilizes IEEE729- 1983(Standard Glossary of 

Software Engineering Terminology) to characterize defects 

as, From the inside of the product, the defects are mistakes 

and errors in the maintenance or development of the product 

item. From an external perspective, a defect is the violation 

or failure of the framework/system to accomplish specific 

capacities [3,4].The description of the concepts that are 

easily mistaken with defects is as follows 

1. Fault: The software doesn't perform according to 

the client's expectations and runs in an unsuitable internal 

state. We can view it as a defect that can prompt software 

errors and is regarded as dynamic behavior. 

2. Failure: It refers to the outputs that the software 

generates at runtime, which the client doesn't accept. For 

instance, if the execution capacity is lost, and the client's 

capabilities are not met, the framework can't meet the fixed 

asset's execution necessities. 

3. Error: It is introduced by individuals and changed 

over into faults under specific conditions. It exists in the 

whole software life cycle, including error information in the 

software design, data structure, code, requirements analysis, 

and other carriers [5]. 

The quality of software relies upon the number of 

defects. An excessive number of defects lead to reduced 

client satisfaction, consuming organization assets and 

expenses, and slower testing. To spare the costs, improving 

test productivity is critical to managing defects. 

B. Main research directions of software defects 

1. Software defect management 

Defect management mainly refers to the collection 

,statistics, and useful recording of defects. To improve 

management productivity, engineers have designed many 
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robotized defects management devices. At present, the 

industry's commonly used tools are mainly JIRA dispatched 

by Atlassian and Bugzilla, an open-source bug tracking 

framework provided by Mozilla. The set two tools record 

the transactions, attributes, statistical information of defects, 

and don't have a more profound investigation and explicit 

grouping of defects. Defect analysis and classification are 

significant segments of defect management. Therefore, 

examination and arrangement of deformities require further 

exploration of the data recorded in JIRA and Bugzilla. 

2. Software defect analysis 

Software designers regularly use defect analysis to better 

access programming quality and development quality. 

Software defect analysis is a strategy for characterizing 

imperfections and mining the reasons for defects. The 

motivation behind software defect analysis is to enable 

analysts to find, locate, evaluate, and improve test 

efficiency. The defects analysis methods are mostly 

partitioned into qualitative analysis, quantitative analysis, 

and attribute analysis[4]. Qualitative analysis strategies 

mostly incorporate Root Cause Analysis (RCA) and 

Software Fault Tree Analysis (SFTA). Attribute analysis is 

commonly partitioned into single attribute analysis and 

multi-attribute analysis. 

3. Software defect classification 

Software defects are different and complex. A more clear 

grouping and conglomeration of deficiencies can assist 

programmers with assessing programming quality, improve 

analyzers' work productivity, and decrease the trouble of 

analysis. Classification is likewise useful to suggest repair 

techniques and reuse test cases [2]. It can comprehend the 

distribution of defects as per the Classification and analysis 

results, prevents frequently occurring software 

defects, extraordinarily improve the software development 

cycle, and in this way, improve the quality of software[6,7]. 

In this way, software defects classification is a significant 

piece of software defect analysis. The outcomes of  defect 

classification directly influences the defect analysis process, 

so defect classification has great significance. Up until now, 

software defect classification can  be partitioned into 

manual classification and programmed/automatic 

classification. 

1. Manual classification of software defects: Software 

defect manual classification implies that examiners utilize 

their insight to  group defects into various classes. To start 

with, the researchers set the ideal classification of defects. 

They then discover the fault and type match the defect based 

on experience. None the less, the classification cycle of this 

strategy is quite complicated and requires a large team. 

Because of restricted human energy and memory, a lot of 

data analysis will bring about a lower classification speed, 

far lower than the computer, and consequently burn-through 

a great deal of time and assets. 

III. AUTOMATIC CLASSIFICATION OF SOFTWARE 

Defects: To reduce development costs and improve 

development productivity, individuals are more inclined to 

use computers to automatically classify defects. Specialists 

are attempting to locate a straight forward method to classify 

defects, and the ascent of AI and machine learning has made 

the automatic classification of defects a hotspot for 

industrial research.  

IV. RESEARCH METHODOLOGY 

The proposed methodology for software failure 

prediction employs a systematic approach, encompassing 

critical stages essential for comprehensive data analysis and 

model performance assessment.  

A. DATA INFORMATION  

The JM1 dataset, a component of the PROMISE 

repository, is designed for software defect prediction and 

has been made publicly available by NASA and the NASA 

Metrics Data Program. Naive Baye’s, derived from JM1, has 

exhibited promising performance, out performing J48 for 

defect detection, and the dataset has highlighted the nuanced 

relationship between accuracy and the effectiveness of 

defect detectors. The JM1 dataset comprises 10,885 

instances, each characterized by 22 attributes.  

Notably, there are no missing attributes in the dataset.  

The class distribution indicates that 19.35% of instances are 

labeled as "false" (modules without reported defects), while 

80.65% are labeled as "true" (modules with one or more 

reported defects).  

 

             

Figure: data frame 

B. DATA PRE-PROCESSING  

In the preprocessing pipeline for software failure 

prediction using machine learning, several  critical steps are 

undertaken to refine textual data and optimize it for analysis, 

the standard scaler technique is applied to normalize and 

scale the data, enhancing its numerical stability. 

Subsequently, the text is transformed to lowercase to ensure 

consistency and mitigate case- related variations. To 

facilitate readability and semantic analysis, punctuation 

signals are then systematically removed from the text. The 
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final preprocessing step involves lemmatization, wherein 

words are transformed into their root forms. This not only 

improves consistency but also aids in further reducing 

dimensionality while retaining the essential semantic 

information. The overarching goal of this preprocessing 

approach is to enhance the quality of the textual data, 

minimizing noise and ensuring its readiness for subsequent 

analysis or utilization in machine learning algorithms 

tailored for software failure prediction 

C. EDA  

Exploratory Data Analysis (EDA) stands as a pivotal 

phase in the continuum of data analysis, marked by its 

systematic exploration, visualization, and comprehension of 

a dataset. It functions as a fundamental tool, empowering 

data analysts, researchers, and scientists to unearth pertinent 

insights, identify patterns, detect anomalies, and formulate 

hypotheses. EDA serves as a crucial precursor to in-depth 

studies and informed decision-making. Its significance lies 

in its dual capability: first, to unveil latent information 

inherent in the dataset, and second, to provide a framework 

for conducting thorough and comprehensive research. 

By cultivating a more comprehensive insight into the 

data, EDA plays a pivotal role in guiding subsequent stages 

of analysis, contributing to the formulation of hypotheses, 

model selection, and the overall refinement of analytical 

methodologies.. 

 

Figure: a box plot depicts the distribution of  software defect 

metrics 

 

Figure: Informative control charts for the specified                  

Software  metrics 

D. DATA SPLITTING  

In the domain of machine learning for software failure 

prediction, a widely adopted methodology is the "80:20 data 

partitioning" strategy, which involves dividing a dataset into 

training and testing subsets, allocating 80% for training and 

reserving the remaining 20% for testing. This approach 

serves as a standard practice due to its effectiveness. By 

maintaining a clear distinction between training and testing 

data, this methodology establishes a framework for 

assessing the credibility of predictive and analytical 

outcomes. The evaluation process involves contrasting 

model-generated results with benchmarks derived from the 

reserved testing subset, ensuring a thorough assessment of 

the model's capabilities. 

E.     MODELS USED 

The diagnostic approaches for identifying depression. 

The application of machine learning techniques to the 

detection of depression involves leveraging specialized 

algorithms, specifically  the Multilayer Perceptron 

(MLP),,the Decision Tree Classifier, K Neighbors 

Classifier, Gaussian Naive Bayes (Gaussian NB), and 

Support Vector Classification (SVC). These algorithms are 

adept at analyzing various characteristics and patterns to 

formulate effective  

• The Multi-Layer Perceptron (MLP) algorithm is a 

type of artificial neural network employed in machine 

learning, specifically for software failure prediction. 

Comprising an input layer, hidden layers, and an output 

layer, each layer consists of nodes connected by weighted 

edges. MLP, with its versatility, is widely used for tasks like 

system health monitoring and predictive analytics in 

software reliability, offering a robust framework to discern 

intricate patterns and enhance predictive accuracy. 

• The Decision Tree Classifier is chosen for its 

ability to discern complex relationships within the data. This 

characteristic empowers the model to potentially capture 

nuanced features contributing to depression, enabling a 

more comprehensive understanding of the underlying 

factors  

• The K Neighbors Classifier, on the other hand, 

excels in identifying individuals with similar feature 

patterns. By relying on the similarity of examined cases, it 

becomes proficient in detecting shared characteristics 

among individuals experiencing depressive episodes. This 

capability facilitates a more personalized and precise 

approach to depression diagnosis.  

• The SVC algorithm is employed due to its 

efficiency in defining hyper planes within multi dimensional 

feature space. This attribute makes it a potent method for 

classifying individuals into depressive and non-depressive 

categories based on detailed feature patterns. The SVC's 
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ability to create clear boundaries in feature space enhances 

its accuracy in distinguishing between individuals with and 

without depression. 

• Gaussian Naive Bayes is a classification algorithm 

in machine learning that uses Bayes' theorem and assumes 

features are normally distributed. It's particularly useful for 

handling continuous data and is known for its simplicity and 

effectiveness. This algorithm assumes that each feature is 

independent of the others, given the class label. Gaussian 

Naive Baye’s assumes that each parameter, also called 

features or predictors, has an independent capacity of 

predicting the output variable. 

V. RESULTS 

By scrutinizing the models' responses to different 

algorithms, this analysis aims to elucidate the strengths and 

limitations of each model, thereby informing the selection 

and optimization of models for enhanced predictive 

accuracy in the domain of software failure prediction using 

Machine Learning. 

1) Accuracy  

In the domain of classification, accuracy is quantitatively 

defined as the ratio of correctly classified instances to the 

total size of the dataset, expressed as a percentage. This 

fundamental metric serves as a rigorous measure of a 

classification model's effectiveness in accurately assigning 

data examples to their respective categories. 

      

2) Loss : 

In instances where anticipated outcomes diverge from 

actual observations, the consequential outcome is often 

disappointment. This process aims to optimize the model's 

performance by mitigating discrepancies between predicted 

and actual outcomes, thereby enhancing its utility and 

reliability.  

         

3) Precision  

Precision is a metric that assesses the model's 

performance in making accurate predictions, specifically 

measuring how often the model correctly anticipates a 

favorable outcome. This statistical measure addresses the 

question of how many times the model accurately predicts 

positive instances. Mathematically, precisionis expressed as 

the ratio of true positives to the sum of true positives and 

false positives 

 

 

4) Recall  

The evaluation of model performance hinges on its 

ability to recall and correctly identify all pertinent data 

points. Specifically, when posed with the question, "Among 

all the genuine positive instances, how many did the model 

accurately predict as positive?" recall furnishes the relevant 

answer. In essence, while a high recall indicates the model's 

proficiency in capturing positive instances, a balanced 

consideration of other metrics is imperative for a 

comprehensive assessment of its overall performance.  

 

5) F1 - Score 

The F1-score serves as a consolidated metric that 

integrates a classifier's recall and precision through the 

calculation of their harmonic mean. This metric is 

specifically designed for the comparative evaluation of two 

classifiers. 

 

Performance Evaluation of Machine Learning Model 

 



 

 

Software Defects Prediction Using Machine Learning Algorithm 

Available at https://jscer.org 

 

 

 

Page | 5  

 

 

 

 

 

The table provides a thorough assessment of machine 

learning models for software defect prediction, using 

important performance measures. The rows in the table 

represent individual models, while the columns provide 

information on several metrics, including accuracy, 

precision, recall, and F1-score. 

The MLP model demonstrates a commendable accuracy 

of 0.93, suggesting that it consistently makes correct 

predictions. 

Gaussian Naive Bayes (NB) demonstrates exceptional 

performance in defect prediction, with a high 

accuracyof0.98 and well-balanced precision, recall, and F1-

score of 0.92, 0.96, and 0.94 respectively. 

The Decision Tree algorithm demonstrates outstanding 

prediction capabilities, achieving perfect scores (1.0) in 

accuracy, precision, recall, and F1-score, across all 

measures.  

The Support Vector Classifier (SVC) demonstrates a 

commendable accuracy of 0.97.  

KNN has exceptional performance with a high level of 

accuracy(0.99) and well-balanced precision (0.98), recall 

(0.96), and F1-score (0.93). 

The Ensemble method, which mirrors the Decision Tree, 

receives perfect scores (1.0) in all measures, confirming its 

effectiveness in predicting software defects. 

 

Figure: Performance  evaluation  graph of  machine  

learning   models 

The Decision Tree and Ensemble models demonstrate 

exceptional predictive capabilities with perfect scores across 

all metrics, making them suitable for tasks where precision, 

recall ,and overall accuracy are crucial. Gaussian NB excels 

with a balanced approach, showcasing high accuracy and 

well-maintained precision, recall, and F1-score, making it a 

reliable choice for defect prediction. KNN, with its high 

accuracy and balanced precision and recall, offers a robust 

solution for identifying software defects. 

 

VI. SUMMARY 

Software defects can have a severe impact on software 

quality, causing problems for customers and developers. 

With growing complexities in software designs and 

technology, manual software detection becomes a 

challenging and time-consuming task. Thus, automatic 

software detection has become a hotspot for industrial 

research in the past couple of years. In this paper, we try to 

apply machine learning and deep learning to solve this 

problem. We use  datasets provided by the NASA Promise 

dataset repository and compare the state of the art machine 

learning algorithms' results. The strengths and weaknesses 

of each model are highlighted in these measures, helping 

choose the best model depending on specific goals and 

trade-offs between precision and recall in software defect 

prediction tasks. This field still has much scope for 

improvement. We can think of some novel approaches 

which use complex deep learning algorithms, and also 

researchers should focus on more data collection 
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