

Page |1

Journal of Science, Computing and Engineering Research (JSCER)

Volume-8, Issue-6, June 2025.

DOI: https://doi.org/10.46379/jscer.2025.080603

Software Defects Prediction Using Machine Learning

Algorithm
1R. Anusuya, 2Sadhana Yadav

1Professor, Department of CSE, Modern Institute of Technology & Research Centre,Alwar,Rajasthan.

2PG Student, Department of CSE, Modern Institute of Technology & Research Centre, Alwar,Rajasthan.

Article Information

Received : 24 June 2025

Revised : 26 June 2025

Accepted : 28 June 2025

Published : 30 June 2025

Corresponding Author:

Sadhana Yadav

Abstract—Software quality is one of the essential aspects of a software. With increasing

demand, software designs are becoming more complex, increasing the probability of software

defects. Testers improve the quality of software by fixing defects. Hence the analysis of defects

significantly improves software quality. The complexity of software also results in a higher

number of defects, and thus manual detection can become a very time-consuming process. The K

Neighbors Classifier (KNN) exhibited high accuracy (0.99) and well- balanced precision (0.98),

recall (0.96), and F1-Score (0.93), indicating robust predictive capabilities. The Ensemble model,

a kin to the Decision Tree, demonstrated exceptional accuracy (0.99) and perfect precision,

recall, and F1-Score, affirming its effectiveness in software defect prediction.

Keywords: Software Quality, Software Defects, Software Testing, Machine Learning, NASA

Promise dataset

Copyright © 2025: R. Anusuya, Sadhana Yadav, This is an open access distribution, and reproduction in any medium, provided

Access article distributed under the Creative Commons Attribution License the original work is properly cited License, which

permits unrestricted use.

Citation: R. Anusuya, Sadhana Yadav, “Software Defects Prediction Using Machine Learning Algorithm”, Journal of Science,

Computing and Engineering Research, 8(05), May 2025.

I. INTRODUCTION

With growing demand and technology, the software

industry is rapidly evolving. Since humans do most of the

software development, defects will inevitably occur. In

general, defects can be defined as undesired or unacceptable

deviations in software documents, programs, and data

[1].Defects may exist in requirements analysis because the

product manager misinterprets the customer's needs, and as

a result, this defect will also carry on to the system design

phase. Defects may also occur in the code due to

inexperienced coders. Defects significantly impact software

quality, such as increased software maintenance costs,

especially in healthcare, and aerospace software defects can

have serious consequences. If the fault is detected after

deployment, it causes an overhead on the development team

as they need to re-design some software modules, which

increases the development costs. Defects are nightmares for

reputed

II. CONCEPTS AND OVERVIEW OF SOFTWARE DEFECTS

A. Concept of software defects

Since analysts often can't distinguish between software

defects and programming faults, errors, and failure, this

article utilizes IEEE729- 1983(Standard Glossary of

Software Engineering Terminology) to characterize defects

as, From the inside of the product, the defects are mistakes

and errors in the maintenance or development of the product

item. From an external perspective, a defect is the violation

or failure of the framework/system to accomplish specific

capacities [3,4].The description of the concepts that are

easily mistaken with defects is as follows

1. Fault: The software doesn't perform according to

the client's expectations and runs in an unsuitable internal

state. We can view it as a defect that can prompt software

errors and is regarded as dynamic behavior.

2. Failure: It refers to the outputs that the software

generates at runtime, which the client doesn't accept. For

instance, if the execution capacity is lost, and the client's

capabilities are not met, the framework can't meet the fixed

asset's execution necessities.

3. Error: It is introduced by individuals and changed

over into faults under specific conditions. It exists in the

whole software life cycle, including error information in the

software design, data structure, code, requirements analysis,

and other carriers [5].

The quality of software relies upon the number of

defects. An excessive number of defects lead to reduced

client satisfaction, consuming organization assets and

expenses, and slower testing. To spare the costs, improving

test productivity is critical to managing defects.

B. Main research directions of software defects

1. Software defect management

Defect management mainly refers to the collection

,statistics, and useful recording of defects. To improve

management productivity, engineers have designed many

Software Defects Prediction Using Machine Learning Algorithm

Available at https://jscer.org

Page | 2

robotized defects management devices. At present, the

industry's commonly used tools are mainly JIRA dispatched

by Atlassian and Bugzilla, an open-source bug tracking

framework provided by Mozilla. The set two tools record

the transactions, attributes, statistical information of defects,

and don't have a more profound investigation and explicit

grouping of defects. Defect analysis and classification are

significant segments of defect management. Therefore,

examination and arrangement of deformities require further

exploration of the data recorded in JIRA and Bugzilla.

2. Software defect analysis

Software designers regularly use defect analysis to better

access programming quality and development quality.

Software defect analysis is a strategy for characterizing

imperfections and mining the reasons for defects. The

motivation behind software defect analysis is to enable

analysts to find, locate, evaluate, and improve test

efficiency. The defects analysis methods are mostly

partitioned into qualitative analysis, quantitative analysis,

and attribute analysis[4]. Qualitative analysis strategies

mostly incorporate Root Cause Analysis (RCA) and

Software Fault Tree Analysis (SFTA). Attribute analysis is

commonly partitioned into single attribute analysis and

multi-attribute analysis.

3. Software defect classification

Software defects are different and complex. A more clear

grouping and conglomeration of deficiencies can assist

programmers with assessing programming quality, improve

analyzers' work productivity, and decrease the trouble of

analysis. Classification is likewise useful to suggest repair

techniques and reuse test cases [2]. It can comprehend the

distribution of defects as per the Classification and analysis

results, prevents frequently occurring software

defects, extraordinarily improve the software development

cycle, and in this way, improve the quality of software[6,7].

In this way, software defects classification is a significant

piece of software defect analysis. The outcomes of defect

classification directly influences the defect analysis process,

so defect classification has great significance. Up until now,

software defect classification can be partitioned into

manual classification and programmed/automatic

classification.

1. Manual classification of software defects: Software

defect manual classification implies that examiners utilize

their insight to group defects into various classes. To start

with, the researchers set the ideal classification of defects.

They then discover the fault and type match the defect based

on experience. None the less, the classification cycle of this

strategy is quite complicated and requires a large team.

Because of restricted human energy and memory, a lot of

data analysis will bring about a lower classification speed,

far lower than the computer, and consequently burn-through

a great deal of time and assets.

III. AUTOMATIC CLASSIFICATION OF SOFTWARE

Defects: To reduce development costs and improve

development productivity, individuals are more inclined to

use computers to automatically classify defects. Specialists

are attempting to locate a straight forward method to classify

defects, and the ascent of AI and machine learning has made

the automatic classification of defects a hotspot for

industrial research.

IV. RESEARCH METHODOLOGY

The proposed methodology for software failure

prediction employs a systematic approach, encompassing

critical stages essential for comprehensive data analysis and

model performance assessment.

A. DATA INFORMATION

The JM1 dataset, a component of the PROMISE

repository, is designed for software defect prediction and

has been made publicly available by NASA and the NASA

Metrics Data Program. Naive Baye’s, derived from JM1, has

exhibited promising performance, out performing J48 for

defect detection, and the dataset has highlighted the nuanced

relationship between accuracy and the effectiveness of

defect detectors. The JM1 dataset comprises 10,885

instances, each characterized by 22 attributes.

Notably, there are no missing attributes in the dataset.

The class distribution indicates that 19.35% of instances are

labeled as "false" (modules without reported defects), while

80.65% are labeled as "true" (modules with one or more

reported defects).

Figure: data frame

B. DATA PRE-PROCESSING

In the preprocessing pipeline for software failure

prediction using machine learning, several critical steps are

undertaken to refine textual data and optimize it for analysis,

the standard scaler technique is applied to normalize and

scale the data, enhancing its numerical stability.

Subsequently, the text is transformed to lowercase to ensure

consistency and mitigate case- related variations. To

facilitate readability and semantic analysis, punctuation

signals are then systematically removed from the text. The

Software Defects Prediction Using Machine Learning Algorithm

Available at https://jscer.org

Page | 3

final preprocessing step involves lemmatization, wherein

words are transformed into their root forms. This not only

improves consistency but also aids in further reducing

dimensionality while retaining the essential semantic

information. The overarching goal of this preprocessing

approach is to enhance the quality of the textual data,

minimizing noise and ensuring its readiness for subsequent

analysis or utilization in machine learning algorithms

tailored for software failure prediction

C. EDA

Exploratory Data Analysis (EDA) stands as a pivotal

phase in the continuum of data analysis, marked by its

systematic exploration, visualization, and comprehension of

a dataset. It functions as a fundamental tool, empowering

data analysts, researchers, and scientists to unearth pertinent

insights, identify patterns, detect anomalies, and formulate

hypotheses. EDA serves as a crucial precursor to in-depth

studies and informed decision-making. Its significance lies

in its dual capability: first, to unveil latent information

inherent in the dataset, and second, to provide a framework

for conducting thorough and comprehensive research.

By cultivating a more comprehensive insight into the

data, EDA plays a pivotal role in guiding subsequent stages

of analysis, contributing to the formulation of hypotheses,

model selection, and the overall refinement of analytical

methodologies..

Figure: a box plot depicts the distribution of software defect

metrics

Figure: Informative control charts for the specified

Software metrics

D. DATA SPLITTING

In the domain of machine learning for software failure

prediction, a widely adopted methodology is the "80:20 data

partitioning" strategy, which involves dividing a dataset into

training and testing subsets, allocating 80% for training and

reserving the remaining 20% for testing. This approach

serves as a standard practice due to its effectiveness. By

maintaining a clear distinction between training and testing

data, this methodology establishes a framework for

assessing the credibility of predictive and analytical

outcomes. The evaluation process involves contrasting

model-generated results with benchmarks derived from the

reserved testing subset, ensuring a thorough assessment of

the model's capabilities.

E. MODELS USED

The diagnostic approaches for identifying depression.

The application of machine learning techniques to the

detection of depression involves leveraging specialized

algorithms, specifically the Multilayer Perceptron

(MLP),,the Decision Tree Classifier, K Neighbors

Classifier, Gaussian Naive Bayes (Gaussian NB), and

Support Vector Classification (SVC). These algorithms are

adept at analyzing various characteristics and patterns to

formulate effective

• The Multi-Layer Perceptron (MLP) algorithm is a

type of artificial neural network employed in machine

learning, specifically for software failure prediction.

Comprising an input layer, hidden layers, and an output

layer, each layer consists of nodes connected by weighted

edges. MLP, with its versatility, is widely used for tasks like

system health monitoring and predictive analytics in

software reliability, offering a robust framework to discern

intricate patterns and enhance predictive accuracy.

• The Decision Tree Classifier is chosen for its

ability to discern complex relationships within the data. This

characteristic empowers the model to potentially capture

nuanced features contributing to depression, enabling a

more comprehensive understanding of the underlying

factors

• The K Neighbors Classifier, on the other hand,

excels in identifying individuals with similar feature

patterns. By relying on the similarity of examined cases, it

becomes proficient in detecting shared characteristics

among individuals experiencing depressive episodes. This

capability facilitates a more personalized and precise

approach to depression diagnosis.

• The SVC algorithm is employed due to its

efficiency in defining hyper planes within multi dimensional

feature space. This attribute makes it a potent method for

classifying individuals into depressive and non-depressive

categories based on detailed feature patterns. The SVC's

Software Defects Prediction Using Machine Learning Algorithm

Available at https://jscer.org

Page | 4

ability to create clear boundaries in feature space enhances

its accuracy in distinguishing between individuals with and

without depression.

• Gaussian Naive Bayes is a classification algorithm

in machine learning that uses Bayes' theorem and assumes

features are normally distributed. It's particularly useful for

handling continuous data and is known for its simplicity and

effectiveness. This algorithm assumes that each feature is

independent of the others, given the class label. Gaussian

Naive Baye’s assumes that each parameter, also called

features or predictors, has an independent capacity of

predicting the output variable.

V. RESULTS

By scrutinizing the models' responses to different

algorithms, this analysis aims to elucidate the strengths and

limitations of each model, thereby informing the selection

and optimization of models for enhanced predictive

accuracy in the domain of software failure prediction using

Machine Learning.

1) Accuracy

In the domain of classification, accuracy is quantitatively

defined as the ratio of correctly classified instances to the

total size of the dataset, expressed as a percentage. This

fundamental metric serves as a rigorous measure of a

classification model's effectiveness in accurately assigning

data examples to their respective categories.

2) Loss :

In instances where anticipated outcomes diverge from

actual observations, the consequential outcome is often

disappointment. This process aims to optimize the model's

performance by mitigating discrepancies between predicted

and actual outcomes, thereby enhancing its utility and

reliability.

3) Precision

Precision is a metric that assesses the model's

performance in making accurate predictions, specifically

measuring how often the model correctly anticipates a

favorable outcome. This statistical measure addresses the

question of how many times the model accurately predicts

positive instances. Mathematically, precisionis expressed as

the ratio of true positives to the sum of true positives and

false positives

4) Recall

The evaluation of model performance hinges on its

ability to recall and correctly identify all pertinent data

points. Specifically, when posed with the question, "Among

all the genuine positive instances, how many did the model

accurately predict as positive?" recall furnishes the relevant

answer. In essence, while a high recall indicates the model's

proficiency in capturing positive instances, a balanced

consideration of other metrics is imperative for a

comprehensive assessment of its overall performance.

5) F1 - Score

The F1-score serves as a consolidated metric that

integrates a classifier's recall and precision through the

calculation of their harmonic mean. This metric is

specifically designed for the comparative evaluation of two

classifiers.

Performance Evaluation of Machine Learning Model

Software Defects Prediction Using Machine Learning Algorithm

Available at https://jscer.org

Page | 5

The table provides a thorough assessment of machine

learning models for software defect prediction, using

important performance measures. The rows in the table

represent individual models, while the columns provide

information on several metrics, including accuracy,

precision, recall, and F1-score.

The MLP model demonstrates a commendable accuracy

of 0.93, suggesting that it consistently makes correct

predictions.

Gaussian Naive Bayes (NB) demonstrates exceptional

performance in defect prediction, with a high

accuracyof0.98 and well-balanced precision, recall, and F1-

score of 0.92, 0.96, and 0.94 respectively.

The Decision Tree algorithm demonstrates outstanding

prediction capabilities, achieving perfect scores (1.0) in

accuracy, precision, recall, and F1-score, across all

measures.

The Support Vector Classifier (SVC) demonstrates a

commendable accuracy of 0.97.

KNN has exceptional performance with a high level of

accuracy(0.99) and well-balanced precision (0.98), recall

(0.96), and F1-score (0.93).

The Ensemble method, which mirrors the Decision Tree,

receives perfect scores (1.0) in all measures, confirming its

effectiveness in predicting software defects.

Figure: Performance evaluation graph of machine

learning models

The Decision Tree and Ensemble models demonstrate

exceptional predictive capabilities with perfect scores across

all metrics, making them suitable for tasks where precision,

recall ,and overall accuracy are crucial. Gaussian NB excels

with a balanced approach, showcasing high accuracy and

well-maintained precision, recall, and F1-score, making it a

reliable choice for defect prediction. KNN, with its high

accuracy and balanced precision and recall, offers a robust

solution for identifying software defects.

VI. SUMMARY

Software defects can have a severe impact on software

quality, causing problems for customers and developers.

With growing complexities in software designs and

technology, manual software detection becomes a

challenging and time-consuming task. Thus, automatic

software detection has become a hotspot for industrial

research in the past couple of years. In this paper, we try to

apply machine learning and deep learning to solve this

problem. We use datasets provided by the NASA Promise

dataset repository and compare the state of the art machine

learning algorithms' results. The strengths and weaknesses

of each model are highlighted in these measures, helping

choose the best model depending on specific goals and

trade-offs between precision and recall in software defect

prediction tasks. This field still has much scope for

improvement. We can think of some novel approaches

which use complex deep learning algorithms, and also

researchers should focus on more data collection

REFERENCES

[1]. Redmon, J., & Farhadi, A. (2018). YOLOv3: An

Incremental Improvement. arXiv preprint arXiv –

[2]. Y.Cai,Softwarereliabilityengineeringfoundation,Tsingh

ua universitypress,1995.

[3]. J.Gao,L.Zhang,Z.FengrongandZ.Ye,"ResearchonSoftwa

reClassification,"inInformationTechnology,Networking,

Electronic and Automation ControlConference,2019.

[4]. I.C.Society,"IEEE729-1983

IEEEStandardGlossaryofSoftware Engineering

Terminology," 1982.

[5]. W.Bi,"ResearchonSoftwareDefectClassificationandAna

ly sis,"ComputerScience,2013.

[6]. YangandM.Duan,"ResearchofSoftwareDefectAnalysisT

echnology,"Computer Engineering &Software,2018.

[7]. J.CollofelloandB.P.Gosalla,"Anapplicationofcausalanal

ysistothesoftwaremodificationprocess,"Software:Practic

eand Experience, vol. 23, 1993.

[8]. J.W.Horch, Practica l Guide to Software Quality

Management Artech House,2003.

[9]. R. Chillarege, I. Bhandari, J. Chaar, M. J. Halliday,

D.S.Moebus, B.K.RayandM .-Y.Wong, "Orthogonal

Defect Classification- A Concept for In-Process

Measurements,"IEEETransactionsonsoftwareEngineeri

ng,vol.18,pp.943-956,1992.

[10]. S.&.S.E.S.Committee,"IEEE1044-1993-IEEE

StandardClassificationforSoftwareAnomalies,"IEEE,19

93.

[11]. X.Huang,Softwarereliability,safetyandqualityassura

nce,Electronic Industry Press, 2002.

[12]. L. Putnam and W. Myers, Measures

forexcellence:reliablesoftwareontime,withinbudget,Pren

ticeHallProfessional Technical Reference, 1991.

Software Defects Prediction Using Machine Learning Algorithm

Available at https://jscer.org

Page | 6

[13]. I. Raphael and C. Michael, "Fault

links:identifyingmoduleandfaulttypesandtheirrelationshi

p,"2004.

[14]. L.Macaulay,Humanomputerinteractionforsoftwared

esigners,Itp-Media,1995.

[15]. "NASAPromiseDatasetRepository". I. T. Jolliffe

and J. Cadima, "Principalcomponentanalysis: a review

and recentdevelopments,"Philosophical Transactions of

theoyalSocietyA:Mathematical,PhysicalandEngineering

Sciences,vol.374,2016.

[16]. L.Breiman,"RandomForests,"MachineLearning,vol

.45,pp.5-32, 2004.

[17]. Y.LeCun,Y.BengioandG.Hinton,"Deeplearning,"N

ature,vol.521,pp.436-444,2015.

[18]. "Logisticregression,"Wikipedia.

[19]. "NaiveBayes,"Wikipedia.

[20]. "GradientBoostingClassifier,"Wikipedia.

[21]. "SupportVectorMachine,"Wikipedia.

[22]. P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H.

Mehta,T.Duan,D.Ding,A.Bagul,C.Langlotz,K.Shpanska

ya,M.Lungren and A. Ng, "CheXNet: Radiologist-

LevelPneumonia Detection on Chest X-Rays

withDeepLearning,"Arxiv, vol. abs/1711.05225, 2017.

[23]. J.BaandD.P.Kingma,"Adam:AMethodforStochastic

Optimization,"Clinical Orthopaedics and

RelatedResearch,

