
                                                                                                                                         

Page |1 

  

 

Journal of Science, Computing and Engineering Research (JSCER) 

Volume-8, Issue-7, July 2025. 

DOI: https://doi.org/10.46379/jscer.2025.080606 

Error Prediction in Software Using Machine Learning 

Algorithm 
R. Anusuya, Sadhana Yadav 

1Professor, Department of CSE, Modern Institute of Technology & Research Centre, Alwar, Rajasthan,  India 

2PG Student, Department of CSE, Modern Institute of Technology & Research Centre, Alwar, Rajasthan,  India 

Article Information 

Received : 15 July  2025 

Revised : 17 July  2025 

Accepted : 21 July  2025 

Published : 25 July  2025 

 

Corresponding Author: 

Sadhana Yadav 

Abstract— Software Engineering is a branch of computer science that enables tight 

communication between system software and training it as per the requirement of the user. We 

have selected seven distinct algorithms from machine learning techniques and are going to test 

them using the data sets acquired for NASA public promise repositories. The results of our 

project enable the users of this software to bag up the defects are selecting the most efficient of 

given algorithms in doing their further respective tasks, resulting in effective results. 

 

Keywords: Software quality metrics, Software defect prediction, Software fault prediction, Machine 

learning algorithms 

Copyright © 2025: R. Anusuya, Sadhana Yadav, This is an open access distribution, and reproduction in any medium, provided 

Access article distributed under the Creative Commons Attribution License the original work is properly cited License, which 

permits unrestricted use. 

 

Citation: R. Anusuya, Sadhana Yadav, “Error Prediction in Software Using Machine Learning Algorithm”, Journal of Science, 

Computing and Engineering Research, 8(07), July 2025. 

 

I. INTRODUCTION 

A) Problem Statement: 

Now-a-days developing software system is a difficult 

process which involves planning, analyzing, designing, 

implementing, test, integrate and maintenance. A software 

engineer work is developing a system in time with limited 

budget which is done in planning phase. While doing the 

development process we can have few defects like not 

proper design, where the logic is poor, data handling is 

improper, etc. and these defects cause errors which lead to 

re-do the work, increasing in development and cost of 

maintenance. This all are responsible for the decrease in 

customer satisfaction. In this point of view, faults are 

grouped on the basis of sternness, corrective and advance 

Actions are taken as per the sternness defined. The   

selected machine learning algorithms for comparison are: 

a. Multilayer Perceptron (MLP) 

b. KNN classifier 

c. Guassian Naïve  Bayes 

d. Decision tree 

e. Support Vector Classifier (SVC). 

f. Ensemble method 

B) Objective: 

The Objective of this project is to estimate the defect of 

software using machine learning algorithms. On training the 

various ML Algorithms we need to get good accuracy 

percentage so that the particular algorithm fits the best in 

order to estimate the defects Support Vector Classifier (SVC) 

supports both classification as well as regression. It is 

productive and straight-lined method which is used in 

classification. For classification it divides two groups by 

making boundaries between the group of data. 

C) Proposed System: 

The proposed system includes SVC, Multilayer 

perceptron, Naive Baye’s algorithm, Decision Tree, KNN 

Classifer, Ensemble method, Functions to solve the class 

misbalancing problem which causes in the decreasing 

performance of defect prediction. The dataset has been trained 

and spitted according to the constraints and using the 

accuracies has been defined in order to measure the defect 

estimation capability of various algorithms proposed. 

D) Advantages of proposed system:  

1. Predicted model is used for evaluating the performance 

measures.  



 

 

Error Prediction in Software Using Machine Learning Algorithm 

 

Available at https://jscer.org 

 

 

 

Page | 2  

 

 

 

 

 

2. We can apply various datasets in this project. But we 

are using NASA datasets in our project.   

3. Software defects are classified to the extent.  

4. Advance measures can be taken on selection of 

algorithm  

5. Provides Better results.  

6. Identify defects in the early stage of the project which 

in turn results in Customer loyalty. 

 

II. SYSTEM DESIGN 

A) System Architecture: 

 

 

III.   RESEARCH METHODOLOGY 

The proposed methodology for software failure 

prediction employs a systematic approach, encompassing 

critical stages essential for comprehensive data analysis and 

model performance assessment.  

A) DATA INFORMATION  

  The JM1 dataset, a component of the PROMISE repository, is 

designed for software defect prediction and has been made 

publicly available by NASA and the NASA Metrics Data 

Program. Naive Baye’s, derived from JM1, has exhibited 

promising performance, out performing J48 for defect 

detection, and the dataset has highlighted the nuanced 

relationship between accuracy and the effectiveness of defect 

detectors. The JM1 dataset comprises 10,885 instances, each 

characterized by 22 attributes.  

   Notably, there are no missing attributes in the dataset.  The 

class distribution indicates that 19.35% of instances are labeled 

as "false" (modules without reported defects), while 80.65% 

are labeled as "true" (modules with one or more reported 

defects).  

 

            
                                         Figure: data frame 

B) DATA PRE-PROCESSING  

       In the preprocessing pipeline for software failure 

prediction using machine learning, several  critical steps are 

undertaken to refine textual data and optimize it for analysis, 

the standard scaler technique is applied to normalize and scale 

the data, enhancing its numerical stability. Subsequently, the 

text is transformed to lowercase to ensure consistency and 

mitigate case- related variations. To facilitate readability and 

semantic analysis, punctuation signals are then systematically 

removed from the text. The final preprocessing step involves 

lemmatization, wherein words are transformed into their root 

forms. This not only improves consistency but also aids in 

further reducing dimensionality while retaining the essential 

semantic information. The overarching goal of this 

preprocessing approach is to enhance the quality of the textual 

data, minimizing noise and ensuring its readiness for 

subsequent analysis or utilization in machine learning 

algorithms tailored for software failure prediction 

C) EDA  

    Exploratory Data Analysis (EDA) stands as a pivotal phase 

in the continuum of data analysis, marked by its systematic 

exploration, visualization, and comprehension of a dataset. It 

functions as a fundamental tool, empowering data analysts, 

researchers, and scientists to unearth pertinent insights, identify 

patterns, detect anomalies, and formulate hypotheses. EDA 

serves as a crucial precursor to in-depth studies and informed 

decision-making. Its significance lies in its dual capability: 

first, to unveil latent information inherent in the data set,and 

second, to provide a framework for conducting thorough and 

comprehensive research. 

By cultivating a more comprehensive insight into the data, 

EDA plays a pivotal role in guiding subsequent stages of 

analysis, contributing to the formulation of hypotheses, model 



 

 

Error Prediction in Software Using Machine Learning Algorithm 

 

Available at https://jscer.org 

 

 

 

Page | 3  

 

 

 

 

 

selection, and the overall refinement of analytical 

methodologies. 

 

 
  Figure: a box plot depicts the distribution of                   software 

defect metrics 

 

 
Figure: Informative control charts for the specified software 

Metrics 

 

D) DATA SPLITTING  

In the domain of machine learning for software failure 

prediction, a widely adopted methodology is the "80:20 data 

partitioning" strategy, which involves dividing a dataset into 

training and testing subsets, allocating 80% for training and 

reserving the remaining 20% for testing. This approach serves 

as a standard practice due to its effectiveness. By maintaining a 

clear distinction between training and testing data, this 

methodology establishes a framework for assessing the 

credibility of predictive and analytical outcomes. The 

evaluation process involves contrasting model-generated 

results with benchmarks derived from the reserved testing 

subset, ensuring a thorough assessment of the model's 

capabilities. 

E) MODELS USED 

The diagnostic approaches for identifying depression. The 

application of machine learning techniques to the detection of 

depression involves leveraging specialized algorithms, 

specifically the Multilayer Perceptron(MLP) ,the Decision 

Tree Classifier, K Neighbors Classifier, Gaussian Naive Bayes 

(Gaussian NB), and Support Vector Classification (SVC). 

These algorithms are adept at analyzing various characteristics 

and patterns to formulate effective  

 

The Multi-Layer Perceptron (MLP) algorithm is a type of 

artificial neural network employed in machine learning, 

specifically for software failure prediction. Comprising an 

input layer, hidden layers, and an output layer, each layer 

consists of nodes connected by weighted edges.  

MLP, with its versatility, is widely used for tasks like system 

health monitoring and predictive analytics in software 

reliability, offering a robust framework to discern intricate 

patterns and enhance predictive accuracy. 

 

The Decision Tree Classifier is chosen for its ability to discern 

complex relationships within the data. This characteristic 

empowers the model to potentially capture nuanced features 

contributing to depression, enabling a more comprehensive 

understanding of the underlying factors  

 

The K Neighbors Classifier, on the other hand, excels in 

identifying individuals with similar feature patterns. By relying 

on the similarity of examined cases, it becomes proficient in 

detecting shared characteristics among individuals 

experiencing depressive episodes. This capability facilitates a 

more personalized and precise approach to depression 

diagnosis.  

The SVC algorithm is employed due to its efficiency in 

defining hyper planes within multi dimensional feature space. 

This attribute makes it a potent method for classifying 

individuals into depressive and non-depressive categories 

based on detailed feature patterns. The SVC's ability to create 

clear boundaries in feature space enhances its accuracy in 

distinguishing between individuals with and without 

depression. 

 

Gaussian Naive Bayes is a classification algorithm in machine 

learning that uses Bayes' theorem and assumes features are 

normally distributed. It's particularly useful for handling 

continuous data and is known for its simplicity and 

effectiveness. This algorithm assumes that each feature is 

independent of the others, given the class label. Gaussian 

Naive Baye’s assumes that each parameter, also called features 

or predictors, has an independent capacity of predicting the 

output variable. 

F) Results 

By scrutinizing the models' responses to different algorithms, 

this analysis aims to elucidate the strengths and limitations of 

each model, thereby informing the selection and optimization 

of models for enhanced predictive accuracy in the domain of 

software failure prediction using Machine Learning. 



 

 

Error Prediction in Software Using Machine Learning Algorithm 

 

Available at https://jscer.org 

 

 

 

Page | 4  

 

 

 

 

 

1) Accuracy  

In the domain of classification, accuracy is quantitatively 

defined as the ratio of correctly classified instances to the total 

size of the dataset, expressed as a percentage. This 

fundamental metric serves as a rigorous measure of a 

classification model's effectiveness in accurately assigning data 

examples to their respective categories. 

     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =                 𝑇𝑃+𝑇𝑁  

                                      𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 

2) Loss : 

In instances where anticipated outcomes diverge from actual 

observations, the consequential outcome is often 

disappointment. This process aims to optimize the model's 

performance by mitigating discrepancies between predicted 

and actual outcomes, thereby enhancing its utility and 

reliability.  

        𝐿𝑜𝑠𝑠= −1Σ𝑚 𝘧𝑖.log(𝘧𝑖)  

                      𝑚        𝑖=1  

3) Precision  

Precision is a metric that assesses the model's performance in 

making accurate predictions, specifically measuring how often 

the model correctly anticipates a favorable outcome. This 

statistical measure addresses the question of how many times 

the model accurately predicts positive instances. 

Mathematically, precisionis expressed as the ratio of true 

positives to the sum of true positives and false positives 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =                        𝑇𝑃  

                                                                                 

𝑇𝑃+𝐹𝑃 

   

4) Recall  

The evaluation of model performance hinges on its ability to 

recall and correctly identify all pertinent data points. 

Specifically, when posed with the question, "Among all the 

genuine positive instances, how many did the model accurately 

predict as positive?" recall furnishes the relevant answer. In 

essence, while a high recall indicates the model's proficiency in 

capturing positive instances, a balanced consideration of other 

metrics is imperative for a comprehensive assessment of its 

overall performance.  

 

𝑅𝑒𝑐𝑎𝑙𝑙  =                          𝑇𝑃  

                                     𝑇𝑃+𝐹𝑁  

5) F1 - Score 

The F1-score serves as a consolidated metric that integrates a 

classifier's recall and precision through the calculation of their 

harmonic mean. This metric is specifically designed for the 

comparative evaluation of two classifiers. 

  

 

𝐹1−𝑠𝑐𝑜𝑟𝑒=               2  

                                  1     + 

                           𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙 

 

 Performance Evaluation of Machine Learning Model 

 

    

 
 

The table provides a thorough assessment of machine learning 

models for software defect prediction, using important 

performance measures. The rows in the table represent 

individual models, while the columns provide information on 

several metrics, including accuracy, precision, recall, and F1-

score. 

The MLP model demonstrates a commendable accuracy of 

0.93, suggesting that it consistently makes correct predictions. 

Gaussian Naive Bayes (NB) demonstrates exceptional 

performance in defect prediction, with a high accuracyof0.98 

and well-balanced precision, recall, and F1-score of 0.92, 0.96, 

and 0.94 respectively. 

The Decision Tree algorithm demonstrates outstanding 

prediction capabilities, achieving perfect scores (1.0) in 

accuracy, precision, recall, and F1-score, across all measures.  

The Support Vector Classifier (SVC) demonstrates a 

commendable accuracy of 0.97.  

Models  Accuracy Precision Recall F1- 

score 



 

 

Error Prediction in Software Using Machine Learning Algorithm 

 

Available at https://jscer.org 

 

 

 

Page | 5  

 

 

 

 

 

KNN has exceptional performance with a high level of 

accuracy(0.99) and well-balanced precision (0.98), recall 

(0.96), and F1-score (0.93). 

The Ensemble method, which mirrors the Decision Tree, 

receives perfect scores (1.0) in all measures, confirming its 

effectiveness in predicting software defects. 

 

 
 

Figure: Performance  evaluation  graph of  machine      learning   

models 

 

The Decision Tree and Ensemble models demonstrate 

exceptional predictive capabilities with perfect scores across 

all metrics, making them suitable for tasks where precision, 

recall ,and overall accuracy are crucial. Gaussian NB excels 

with a balanced approach, showcasing high accuracy and well-

maintained precision, recall, and F1-score, making it a reliable 

choice for defect prediction. KNN, with its high accuracy and 

balanced precision and recall, offers a robust solution for 

identifying software defects. 

      

IV. CONCLUSION 

Software defects can have a severe impact on software quality, 

causing problems for customers and developers. With growing 

complexities in software designs and technology, manual 

software detection becomes a challenging and time-consuming 

task. Thus, automatic software detection has become a hotspot 

for industrial research in the past couple of years. In this paper, 

we try to apply machine learning and deep learning to solve 

this problem. We use datasets provided by the NASA Promise 

dataset repository and compare the state of the art machine 

learning algorithms' results. The strengths and weaknesses of 

each model are highlighted in these measures, helping choose 

the best model depending on specific goals and trade-offs 

between precision and recall in software defect prediction 

tasks. This field still has much scope for improvement. We can 

think of some novel approaches which use complex deep 

learning algorithms, and also researchers should focus on more 

data collection. 

REFERENCES 

[1]. Y.Cai,Softwarereliabilityengineeringfoundation,Tsinghua 

universitypress,1995. 

[2]. J.Gao,L.Zhang,Z.FengrongandZ.Ye,"ResearchonSoftwareCla

ssification,"inInformationTechnology,Networking,Electronic 

and Automation ControlConference,2019. 

[3]. I.C.Society,"IEEE729-1983-EEEStandardGlossaryofSoftware 

Engineering Terminology," 1982. 

[4]. W.Bi,"ResearchonSoftwareDefectClassificationandAnalysis,"

ComputerScience,2013. 

[5]. X.YangandM.Duan,"ResearchofSoftwareDefectAnalysisTech

nology,"Computer Engineering &Software,2018. 

[6]. J.CollofelloandB.P.Gosalla,"Anapplicationofcausalanalysistot

hesoftwaremodificationprocess,"Software:Practiceand 

Experience, vol. 23, 1993. 

[7]. J.W.Horch,  Practica l Guide to Software Quality 

Management  Artech  House,2003. 

[8]. R. Chillarege, I. Bhandari, J. Chaar, M. J. Halliday, 

D.S.Moebus, B.K.RayandM .-Y.Wong, "Orthogonal Defect 

Classification- A Concept for In-Process 

Measurements,"IEEETransactionsonsoftwareEngineering,vol.

18,pp.943-956,1992. S.&.S.E.S.Committee,"IEEE1044-1993-

IEEE 

[9]. StandardClassificationforSoftwareAnomalies,"IEEE,1993 

[10]. X.HuangSoftwarere liability, safety and quality assurance, 

Electronic Industry Press, 2002. 

[11]. Biffl, S. (2000). Using inspection data for defect estimation. 

IEEE Software, 17(6), 36-43.  

[12]. Petersson, H., &Wohlin, C. (1999, November). An empirical 

study of experience-based software defect content estimation 

methods. In Proceedings 10th International Symposium on 

Software Reliability Engineering (Cat. No. PR00443) (pp. 

126-135). IEEE. 

[13]. Yalçıner, B., &Özdeş, M. (2019, September). 4th 

International Conference on Computer Science and 

Engineering IEEE. 


